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1. Introduction

This paper is a reaction to a number of recent publications [1–5] on randomized ver-
sions of the Kaczmarz method triggered by Strohmer and Vershynin [6], and should be 
viewed as an addendum to [7,8]. The latter two papers are devoted to the theory of 
so-called Schwarz iterative (or subspace correction) methods for solving elliptic varia-
tional problems in Hilbert spaces. That the Kaczmarz method is a particular instance 
of Schwarz iterative methods has been pointed out in [8]. Alternatively, the Kaczmarz 
method is a special case of the Neumann–Halperin alternating directions method (ADM) 
for finding a point in the intersection of many (affine) subspaces of a Hilbert space [9,10]
which in turn is part of the family of projection onto convex sets (POCS) algorithms 
that is popular in many applications (e.g. [11,12]).

The classical Kaczmarz method (with relaxation parameter) for solving general linear 
systems Ax = b with given right-hand side b ∈ C

n and matrix A ∈ C
m×n, originally 

proposed by S. Kaczmarz [13] in 1937 for the case m = n, is defined as the iteration

xj+1 = xj + ωj

bij − aijx
j

‖aij‖2
2

aHij , j = 0, 1, . . . , (1)

where ai ∈ C
n, i = 1, . . . , m, denote the row vectors of A (thus, aHi are the column vectors 

of AH , the Hermitian conjugate of A), and x0 is a given starting vector. From the update 
formula (1) it follows that, if we choose as Hilbert space the subspace V := Ran(AH)
of Cn, the Kaczmarz iteration can be interpreted as ADM with the m coordinate hyper-
planes Mi := {x ∈ C

n : aix = bi} to project on. The sequence I := {ij}j≥0 determines 
the ordering in which ortho-projections onto the hyperplanes Mi are carried out. Typical 
orderings are

• cyclic, where the index set i = 1, . . . , m is repeatedly traversed in a fixed order, e.g., 
ij = j (mod m) + 1,

• random, where ij is randomly and independently determined according to a fixed 
probability distribution {pi}, or

• greedy, where ij is picked according to residual information, e.g., to maximize rji :=
bi − aix

j in absolute value,

with many further variations possible. An appealing property of the Kaczmarz method is 
that, under mild conditions on the ordering I and the relaxation parameters ωj ∈ (0, 2), 
the iteration (1) is convergent. Moreover, if b belongs to the range of A (consistent case) 
and x0 ∈ Ran(AH) then it ultimately converges to the least-squares solution xLS = A†b

of the system Ax = b. Here A† denotes the pseudo-inverse of A.
It is well-known that (1) is equivalent to the successive over-relaxation (SOR) iteration 

with index sequence I for the system AAHy = b if the starting vector x0 = AHy0 belongs 
to Ran(AH). Indeed, the j-th SOR step with relaxation parameter ωj for this system 
can be written in the form
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xj = AHyj , yj+1
i = yji +

{
ωj

bij−aij
xj

‖aij
‖2
2

, i = ij ,

0, i �= ij ,
j = 0, 1, . . . .

It is easy to check that then

xj+1 = AHyj + ωj

bij − aijx
j

‖aij‖2
2

aHij = xj + ωj

bij − aijx
j

‖aij‖2
2

aHij .

The convergence theory of the Kaczmarz method and its block versions is typically 
approached either via the SOR interpretation, or the previously discussed ADM formu-
lation, even though this is not always made explicit.

Schwarz iterative methods, see [14–16,7] for their origins and an outline of their theory, 
are essentially a reformulation of ADM within a more constructive framework which 
was motivated by the need for solving large-scale discretizations of operator equations 
in Hilbert spaces, such as elliptic partial differential and integral equations in Sobolev 
spaces. This framework is briefly introduced in Section 2. It leads to generic upper 
bounds for the convergence speed of Schwarz iterative methods (and thus ADM and, in 
particular, Kaczmarz methods) for deterministic cyclic [7], greedy, and random orderings 
[8] in terms of the spectral properties of a transformed operator equation generated by 
the original problem and its splitting into subproblems. Since the convergence estimate 
for cyclic orderings obtained in [7] was not proved in full generality, and does not seem 
to appear in the ADM and POCS literature, we state it here as Theorem 1, and give 
a short proof of it. We also quote and generalize the convergence estimate for random 
orderings originated from [6] and extended in [17,8], see Theorem 2. Theorem 3 is new, 
it concerns a different randomized block version of the Kaczmarz iteration, and provides 
a link between the randomized Kaczmarz iteration and an iteration with simultaneous 
(or synchronous) update rule. In Section 3 we show how the convergence rate estimates 
of many recent papers on the Kaczmarz method and its block versions can be obtained 
from the existing theory of Schwarz iterative methods in a unified way. We also provide 
an improved convergence bound for the Kaczmarz method with cyclic orderings, see 
Theorem 4. Finally, the concluding Section 4 contains some numerical experiments that 
illustrate and complement the theoretical part.

2. Convergence of Schwarz iterative methods

2.1. Space splittings

We repeat the setup from [8], with the only difference that we explicitly allow all 
Hilbert spaces to be over the field C (there is no difference but a notational one to the 
case of spaces over R considered in most of the previous papers). Consider a separable 
Hilbert space V , let a(·,·) be a continuous positive definite Hermitian form on V , and 
let F be a bounded linear functional on V . We use the notation Va if we consider V as 
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Hilbert space with the scalar product given by the form a(·,·). Obviously, knowing the 
norm ‖v‖a :=

√
a(v, v) in Va determines a(v, w) for all v, w ∈ Va. To solve the variational 

problem, find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V, (2)

we use the concept of stable space splittings [16]. Let Va be represented by an at most 
countable number of Hilbert spaces Vai

equipped with positive definite Hermitian forms 
ai(·,·), and associated bounded linear operators Ri : Vai

→ Va as follows:

Va =
∑
i

RiVai
:= {v =

∑
i

Rivi : vi ∈ Vai
}. (3)

We allow for redundancy, i.e., we do not assume that Va is the direct sum of its sub-
spaces RiVai

. We call (3) a stable space splitting, if

0 < λmin := inf
u∈Va

a(u, u)
‖|u‖|2 ≤ λmax := sup

u∈Va

a(u, u)
‖|u‖|2 < ∞, (4)

where

‖|u‖|2 := inf
vi∈Vai

: u=
∑

i Rivi

∑
i

ai(vi, vi).

The constants λmin and λmax are called lower and upper stability constants respectively, 
and κ := λmax/λmin is called the condition number of the space splitting (3).

For better orientation of the reader, we give examples of space splittings related to 
the solution of linear systems Ax = b. The first one addresses the case of positive 
definite Hermitian matrices, while the remaining two are underlying the treatment of 
Kaczmarz-type methods for general linear systems we focus on in this paper.

• Example 1. The standard space splitting for solving linear systems Ax = b with 
positive definite Hermitian A ∈ C

n×n is given by V = Va = C
n, with the form 

a(x, y) = yHAx induced by A, and

Vai
= C, ‖xi‖2

ai
= ai(xi, xi) = aii|xi|2, Rixi = xiei, i = 1, . . . , n,

where ei denotes the i-th unit coordinate basis vector in Cn, and aii the diagonal 
elements of A. Then

‖|x‖|2 =
n∑

i=1
aii|xi|2, x =

⎛
⎜⎝

x1
...
xn

⎞
⎟⎠ ∈ C

n,

and the condition of the splitting κ equals the spectral condition number of 
D−1/2AD−1/2, where D = diag(A). As will be outlined below, this splitting leads 
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to the classical Jacobi–Richardson and Gauss–Seidel-type. Replacing the diagonal 
entries aii by arbitrary constants di > 0 in the definition of the above space splitting 
leads to the study of the influence of diagonal scaling, this modification will appear 
for Kaczmarz methods below.

• Example 2. Let now A ∈ C
m×n be arbitrary. It is convenient to first consider the 

special case of a consistent system Ax = b with b ∈ Ran(A) (the general case will 
be discussed in Section 3). Such a system has the general solution x = xLS + x̂, 
where xLS ∈ Ran(AH) is the least-squares solution of Ax = b, and x̂ ∈ Ker(A) is 
arbitrary, and it is known that the classical Kaczmarz method will converge to xLS if 
x0 ∈ Ran(AH). Set V = Va := Ran(AH) ⊂ C

n with a(x, x) = xHx. The variational 
problem (2) is a trivial one: x = xLS (since xLS ∈ Va this makes sense). For the 
auxiliary spaces Vai

and the operators Ri, we set

Vai
= C, ‖yi‖2

ai
= ai(yi, yi) := di|yi|2, Riyi = yia

H
i , i = 1, . . . ,m,

where di > 0 are so far unspecified constants. Let D denote the m × m diagonal 
matrix formed by these di. A straightforward computation leads to

‖|x‖|2 = inf
yi: x=

∑m
i=1 Riyi

m∑
i=1

diy
2
i = inf

y∈Cm: x=AHy
‖D1/2y‖2

2

= inf
z∈Cm: x=AHD−1/2z

‖z‖2
2, x ∈ Va.

Thus, the stability constants of this splitting are λmin = σ2
min(D−1/2A) (the smallest 

nonzero eigenvalue of AHD−1A) and λmax = σ2
max(D−1/2A) (the largest eigenvalue 

of AHD−1A). Consequently, the condition number of the splitting equals the essential 
condition number of AHD−1A, i.e.,

κ = κ̄(AHD−1A) := σ2
max(D−1/2A)/σ2

min(D−1/2A). (5)

• Example 3. The analysis of block-iterative methods requires different splittings, based 
either on row or on column partitionings of A. We mention one such splitting that 
is related to the results about block-Kaczmarz solvers in [4,5]. Consider the same Va

and variational problem (2) as in Example 2. Let T := {τk}Kk=1 be a finite partition 
of the row index set {1, 2, . . . , m}, and denote the associated |τk| ×n submatrices of A
by Aτk . Define auxiliary positive-definite Hermitian forms on Vak

= Ran(Aτk) ⊂ C
|τk|

by setting

ak(yτk , yτk) = ‖AH
τ yτk‖2

2, yτk ∈ Vak
, k = 1, . . . ,K.
k
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Finally, let Rkyτk = AH
τk
yτk be the extension operators from Vak

to Va, k = 1, . . . , K. 
Since Ran(AH

τk
Aτk) = Ran(AH

τk
), by these definitions we have

‖|x‖|2 = inf
yτk

∈Vak
: x=

∑K
k=1 Rkyτk

‖Rkyτk‖2
2 = inf

zk∈Ran(AH
τk

): x=
∑K

k=1 zk

K∑
k=1

‖zk‖2
2.

For x ∈ Va and any decomposition x =
∑K

k=1 zk with zk ∈ Ran(AH
τk

) we have

a(x, x) = ‖x‖2
2 ≤ (

K∑
k=1

‖zk‖2)2 ≤ K
K∑

k=1

‖zk‖2
2,

which yields the trivial upper bound λmax = λmax,T ≤ K. However, sharp estimates 
for the stability constants and condition number κ = κT of this splitting valid 
for general row partitions are difficult to obtain, even though one would expect a 
tendency towards improving the condition number κT when increasing the size of 
the τk. In particular, if K = 1 and τ1 = {1, 2, . . . , m} then obviously κT = 1.
One case, where the estimation of these constants is relatively easy but does not lead 
to a small κT , is worth mentioning. Referring to results concerning the optimal paving 
of operators on Hilbert spaces, the authors of [4,5] consider special row partitions, 
characterized by the property that there exist positive constants 0 < α < β < ∞
such that

α‖yτk‖2
2 ≤ ‖AH

τk
yτk‖2

2 ≤ β‖yτk‖2
2, k = 1, . . . ,K. (6)

The existence of such row partitions with α, β ≈ 1 and relatively small K, at least if 
the rows of A have unit norm, is related to the Bourgain–Tzafriri conjecture (see [18]
for a discussion of this and many other conjectures, equivalent to it) which was 
recently confirmed in [19]. Substituting (6) into the formula for ‖|x‖|2, we conclude 
that

‖x‖2
2

β‖(AH)†x‖2
2

= ‖x‖2
2

β infy: AHy=x ‖y‖2
2
≤ ‖x‖2

2
‖|x‖|2 ≤ ‖x‖2

2
α‖(AH)†x‖2

2
,

and thus

α

β
κ̄(AHA) ≤ κT ≤ β

α
κ̄(AHA). (7)

Therefore, row partitions T satisfying (6) with β/α close to 1, as discussed in [4,5], do 
not have any preconditioning effect on solving Ax = b but guarantee fast solvability 
of the subproblems in block-Kaczmarz iterations considered in Section 3.2.
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2.2. Schwarz iterative methods

For the setup of Schwarz iterative methods (or subspace correction methods) associ-
ated with (3) we restrict ourselves to finite splittings (i = 1, . . . , N). We define linear 
operators Ti : Va → Vai

via the variational problems

ai(Tiv, vi) = a(v,Rivi) ∀ vi ∈ Vai
, (8)

to be solved for given v ∈ Va in the spaces Vai
, i = 1, . . . , N . Using these Ti, analogs 

of the classical Jacobi–Richardson and Gauss–Seidel-SOR iterations, called additive and 
multiplicative Schwarz methods associated with the stable space splitting (3) can be 
introduced pretty much along the lines of the standard methods, see [7,8,16,14,20]. The 
additive (or parallel or synchronous) Schwarz iteration is given by

u�+1 = u� + ω�

N∑
i=1

RiTie
�, e� := u− u�, 	 ≥ 0, (9)

where a starting point u0 needs to be provided, and u ∈ Va is the solution of (2). Since

ai(Tie
�, vi) = a(u− u�, Rivi) = F (Rivi) − a(u�, Rivi),

the subproblem results Tie
� are computable from available information, and the update 

direction

wj := Pe�, P :=
N∑
i=1

RiTi, (10)

can easily be computed from the subproblem results. If ω� = ω is fixed for all 	 ≥ 0 then 
we get the Richardson method for the operator equation

Pu =
N∑
i=1

Rifi, (11)

where fi is defined by the variational problems ai(fi, vi) = F (Rivi) valid for all vi ∈ Vai

and i = 1, . . . , N . If the splitting (3) is stable, then the operator P , called additive 
Schwarz operator, is Hermitian and positive-definite on Va, and satisfies the identity

a(Pv, v) = ‖|Pv‖|2 =
N∑
i=1

ai(Tiv, Tiv) ∀ v ∈ Va. (12)

From the definition (4) and (12) we see that stability constants and condition number 
of the splitting (3) are closely related to the spectral properties of P :
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λmin = inf
‖v‖a=1

a(Pv, v), λmax = sup
‖v‖a=1

a(Pv, v). (13)

Moreover, (11) is equivalent to (2). Thus, the additive Schwarz method converges for 
0 < ω < 2/λmax, and if ω = 2/(λmax +λmin) we have the estimate for the asymptotically 
optimal error reduction

‖u− u�‖a ≤ ‖I − ωP‖�Va→Va
‖u− u0‖a =

(
1 − 2

1 + κ

)�

‖u− u0‖a. (14)

The multiplicative (or sequential or asynchronous) Schwarz iteration which we focus 
on in this paper assumes a certain index ordering I = {ij}j≥0 and processes subproblems 
in this order: Given u0, we recursively determine

uj+1 = uj + ωjRijTije
j , ej := u− uj , j ≥ 0. (15)

For the space splittings of Example 1, this iteration (15) reduces to SOR type methods. 
Indeed, denoting by xj the j-th iterate and by x the solution of Ax = b, from (8) we get 
Tie

j = (aii)−1(Ax −Axj)i = (aii)−1(bi −
∑n

k=1 aikx
j
k), which means that xj+1

k = xj
k for 

k �= ij , and

xj+1
ij

= xj
ij

+ ωj

aijij
(bij −

n∑
k=1

aijkx
j
k).

This is the SOR update for the ij-th equation, and in particular the Gauss–Seidel up-
date if ωj = 1. The splittings from Examples 2 and 3 cover the classical and block 
versions of the Kaczmarz iteration, this will be discussed in Sections 3.1 and 3.2 respec-
tively.

For a fair comparison with (9), one usually lumps N steps of the recursion (15) to-
gether into one sweep, and compares their joint error reduction effect with the error 
reduction (9) in one step of the additive Schwarz iteration. For cyclic orderings it is 
often observed in practice that in this comparison the multiplicative Schwarz iteration 
is superior to the additive Schwarz iteration. However, this has been substantiated only 
for special problem classes, and is, in general, not true, see [16]. Finding sharp esti-
mates for the convergence of the iteration (15) with cyclic ordering is, despite many 
attempts [21,7,20], not yet in a final state. The convergence theory for (15) has drawn 
renewed attention after Strohmer and Vershynin [6] proved, in an elementary way, a gen-
eral and realistic bound for the error decay in expectation of a randomized version of 
the Kaczmarz method. This result was immediately taken up and extended in various 
directions, see, e.g., [1,17,8]. We also note that related developments happened indepen-
dently in the convex optimization community, e.g., for direct search methods, see [22,23]. 
A similarly elementary convergence rate estimate holds for the iteration (15) with greedy 
orderings (see [8], to not overload the present paper, we will not dwell on greedy ver-
sions).
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In the remainder of this section, we will state general estimates for the relative error 
reduction in multiplicative Schwarz iterations. The first one, for the standard cyclic 
ordering with constant relaxation ωj = ω is essentially contained in [7], where it is 
proved for the special case of subspaces Vi ⊂ V , and Ri being the natural injections. 
To make the paper self-contained, we include the proof. The second result is based on 
results in [6,17] and quoted from [8]. It concerns randomized orderings, i.e., in each step 
we choose an ij ∈ {1, . . . , N} according to a fixed discrete probability distribution. We 
also state a convergence estimate for a slight extension of the algorithm (15), where in 
the j-th step an index group Ij ⊂ {1, . . . , N} of size 1 ≤ kj ≤ N is picked, and an update 
similar to the one in (9) using subproblem solutions for all i ∈ Ij is performed. Such a 
modification has been mentioned without proof in [8] and might prove useful in further 
optimizing the performance of randomized algorithms for large-scale linear systems. It 
provides a link between the randomized multiplicative Schwarz iteration (kj = 1) and 
the additive Schwarz iteration (9) which corresponds to the case kj = N .

2.3. Cyclic orderings

In this subsection, we consider cyclic orderings I given by ij = j (mod N) + 1, j ≥ 0. 
The relaxation parameters are constant: ωj = ω ∈ (0, 2). Before stating the result, we 
make some theoretical assumptions on norm estimates for the operators Ri : Vai

→ Va. 
In particular, assume we know positive constants γi ≥ ‖Ri‖2

Vai
→Va

such that

a(Rivi, Rivi) ≤ γiai(vi, vi) ∀ vi ∈ Vai
, i = 1, . . . , N. (16)

Also, let γ ≥ λmax be a given upper bound for the upper stability constant of the 
splitting (3). We then have

a(
∑
i∈I

Rivi,
∑
i∈I

Rivi) ≤ γ
∑
i∈I

ai(vi, vi) (17)

for all index subsets I ⊂ {1, . . . , N} and all vi ∈ Vai
(just set u =

∑
i∈I Rivi, and 

look at the definition of ‖|u‖|2 after (4)). In some cases (as for the Kaczmarz method, 
see Section 3.1), such constants can be computed explicitly, in others knowledge about 
them for the execution of the algorithm can be circumvented at little extra cost (e.g., by 
switching to steepest descent updates). To satisfy (16) and (17), in theory we can always 
take

γi = γ = λmax. (18)

The following theorem has been stated in [7] for the situation when Vai
⊂ V , and the 

mappings Ri are the natural injections. We repeat it for the present setting, also because 
it seems not widely known.
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Theorem 1. Assume that (3) is a stable space splitting of the Hilbert space Va, with 
stability constants λmin / max, and condition number κ given by (4). Then:

a) The multiplicative Schwarz iteration (15) with standard cyclic ordering I be given by 
ij = j (mod N) +1, j ≥ 0, and constant relaxation parameters ωj = ω ∈ (0, 2/λmax)
converges to the solution u of (2), with error decay given by

‖u− ū�‖2
a ≤

(
1 − C0

κ

)�

‖u− u0‖2
a, (19)

where ū� = u�N is the solution after 	 sweeps and

C0 := ωλmax(2 − ωλmax)
(1
2�log2(2N)
ωλmax + 1)2

.

b) Depending on N and λmax, the relaxation parameter ω can be chosen such that

‖u− ū�‖2
a ≤

(
1 − 1

(�log2(2N)
 + 1)κ

)�

‖u− u0‖2
a. (20)

Proof. Let Ṽã := Va1 ⊕ Va2 ⊕ . . . ⊕ VaN
be the direct sum of the Hilbert spaces {Vai

}, 
with elements denoted by ṽ = (v1, v2, . . . , vN ), and scalar product given by

‖ṽ‖ã = ã(ṽ, ṽ) :=
N∑
i=1

ai(vi, vi), vi ∈ Vai
, i = 1, 2, . . . , N.

Define the linear operator R : Ṽã �−→ Va by the formula

Rṽ =
N∑
i=1

Rivi, ṽ ∈ Ṽã.

According to (8), its adjoint R∗ : Va �−→ Ṽã can be expressed by the operators Ti:

R∗v = (T1v, T2v, . . . , TNv), v ∈ Va.

Introduce the linear operator

P̃ = R∗R =

⎛
⎜⎜⎜⎜⎜⎝

T1R1 T1R2 . . . T1RN

T2R1 T2R2 . . . T2RN

.
...

...
. . .

...

⎞
⎟⎟⎟⎟⎟⎠ ,
TNR1 TNR2 . . . TNRN
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which acts boundedly on Ṽã, and is the counterpart of the additive Schwarz operator 
P = RR∗ defined in (10). By the spectral properties of P , see (12) and (13), we get the 
lower estimate

ã(R∗Rṽ,R∗Rṽ) = a(PRṽ,Rṽ) ≥ λmina(Rṽ,Rṽ) = λmin‖Rṽ‖2
a, (21)

and similarly the norm bound

‖P̃‖Ṽã→Ṽã
≤ λmax, (22)

since

‖P̃ ṽ‖2
ã = a(PRṽ,Rṽ) ≤ λmaxa(Rṽ,Rṽ) = λmaxã(P̃ ṽ, ṽ) ≤ λmax‖P̃ ṽ‖ã‖ṽ‖ã.

We can decompose P̃ into strictly lower triangular, diagonal, and strictly upper triangular 
parts

P̃ = D̃ + L̃ + L̃∗,

where

L̃ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
T2R1 0 0 . . . 0
T3R1 T3R2 0 . . . 0

...
...

...
. . .

...
TNR1 TNR2 TNR3 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ ,

D̃ =

⎛
⎜⎜⎜⎜⎜⎝

T1R1 0 0 . . . 0
0 T2R2 0 . . . 0
0 0 T3R3 . . . 0
...

...
...

. . .
...

0 0 0 . . . TNRN

⎞
⎟⎟⎟⎟⎟⎠ .

Since

‖D̃ṽ‖2
ã =

N∑
i=1

ai(TiRivi, TiRivi) =
N∑
i=1

a(PRivi, Rivi)

≤ λmax

N∑
i=1

a(Rivi, Rivi) = λmax

N∑
i=1

ai(TiRivi, vi) ≤ λmax‖D̃ṽ‖ã‖ṽ‖ã,

we have

‖D̃‖Ṽ →Ṽ ≤ λmax. (23)

ã ã
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Moreover, as established in [7, Theorem 4], we have the following estimate for the lower 
triangular operator L̃:

‖L̃‖Ṽã→Ṽã
≤ 1

2�log2(2N)
‖P̃‖Ṽã→Ṽã
, (24)

which combined with (22) implies

‖L̃‖Ṽã→Ṽã
≤ 1

2�log2(2N)
λmax. (25)

We note that counterparts of (24) for the matrix case have been investigated a lot, and 
that the logarithmic dependence of the bound on N cannot be improved asymptotically 
in some instances.

With this notation at hand, we can reformulate (2) as variational problem on Ṽã, 
namely, find ũ ∈ Ṽã such that

ã(P̃ ũ, ṽ) = a(Rũ,Rṽ) = F (Rṽ) ∀ ṽ ∈ Ṽã,

and view the cyclic Schwarz iteration in Ṽã as an SOR-type iteration on a linear equation 
of the form P̃ ũ = b̃, where the right-hand side b̃ satisfies ã(b̃, ̃v) = F (Rṽ) for all ṽ ∈ Ṽã. 
Details can be found in [16,7]. The result is the following formula for the error propagation 
per sweep of (15) with cyclic ordering, where as before we denote by ū� = u�N the iterate 
after the 	-th sweep, and by u the solution of (2):

ū�+1 − u = (I − ωR(Ĩ + ωL̃)−1R∗)(ū� − u), 	 ≥ 0.

Here I and Ĩ denote the identity operators on Va and Ṽã respectively. Thus, the error 
decay per sweep of the cyclic Schwarz iteration is determined by the error propagation 
operator

Q = I − ωR(Ĩ + ωL̃)−1R∗ : Va → Va. (26)

To estimate its norm as map in Va, we use the identity

Q∗Q = (I − ωR(Ĩ + ωL̃)−∗R∗)(I − ωR(Ĩ + ωL̃)−1R∗)

= I − ωR(Ĩ + ωL̃)−∗(Ĩ + ωL̃ + Ĩ + ωL̃∗ − ωR∗R)(I + ωL)−1R∗

= I − ωR(Ĩ + ωL̃)−∗(2Ĩ − ωD̃)(Ĩ + ωL̃)−1R∗.

Thus,

‖Q‖2
Va→Va

= sup
‖v‖a=1

a(Q∗Qv, v)

= 1 − ω inf ã((2Ĩ − ωD̃)(Ĩ + ωL̃)−1R∗v, (Ĩ + ωL̃)−1R∗v)

‖v‖a=1
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≤ 1 − ω(2 − ωλmax) inf
‖v‖a=1

ã((Ĩ + ωL̃)−1R∗v, (Ĩ + ωL̃)−1R∗v)

≤ 1 − ω(2 − ωλmax)
(1
2ω�log2(2N)
λmax + 1)2

inf
‖v‖a=1

ã(R∗v,R∗v)

≤ 1 − ω(2 − ωλmax)λmin

(1
2ω�log2(2N)
λmax + 1)2

.

The first inequality follows from (23), the second from (25), and the last from (21). This 
proves (19).

Straightforward minimization leads to (20) if we choose ω according to

ω = 1
(1
2�log2(2N)
 + 1)λmax

. (27)

This establishes Theorem 1. �
Remarks. 1) The estimates (19) and (20) for the convergence rate of the multiplicative 
Schwarz iteration are uniform with respect to ordering – all quantities entering it do not 
change if the enumeration of subproblems is changed. This is a drawback of the estimation 
technique. Numerical examples show that the convergence rate of the cyclic Schwarz 
iteration may significantly change when the subproblems are randomly reordered before 
execution (this may serve as another indication for the sometimes observed speed-up 
when random orderings I are used).

2) An advantage of our bounds (19) and (20) is that they highlight the dependence 
of convergence rates on spectral properties of the operator P , and in particular on its 
spectral condition number, which equals the condition number κ of the underlying space 
splitting (3). This makes them also comparable with the recently obtained bounds for 
similar iterations using randomized and greedy orderings. Previous convergence estimates 
for cyclic orderings, most notably the Whitney–Meany estimate [10, Theorem 2.77, The-
orem 4.4] and the results in [20], both based on analyzing the product representation

Q = (I − ωRNTN ) . . . (I − ωR1T1)

of the error propagation operator (26), are different in nature and, in many cases, weaker 
than (20).

2.4. Random orderings

The following theorem can be found in [8, Theorem 1, b)], it generalizes the results 
of [6,17] to the case of Schwarz iterations based on space splittings. Its proof is completely 
elementary, and will not be repeated here (see the proof of Theorem 3 below for a similar 
argument).
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Theorem 2. Assume that (3) is a stable space splitting of the Hilbert space Va, with 
lower stability constant λmin given by (4), and assume that the constants γi > 0, i =
1, . . . , N , satisfy (16). Create a random ordering I by setting ij = i with probability 
pi = γi/(γ1 + . . .+γN ), independently for different j ≥ 0. Finally, set ωj = ω/γij , where 
ω ∈ (0, 2) is fixed.

Then the multiplicative Schwarz iteration (15) with random ordering I converges in 
expectation with the expected error decay given by

E(‖u− uj‖2
a) ≤

(
1 − ω(2 − ω)λmin

γ1 + . . . + γN

)j

‖u− u0‖2
a, j ≥ 1. (28)

At first glance, the estimates suggest that ω = 1 is the best choice for the relaxation 
parameter, even though it is well-known that for certain applications, over- (ω > 1) or 
under-relaxation (ω < 1) pays off. The question of choosing ω is intertwined with our 
choice of the probability distribution pi which is determined from the γi defined by (16). 
This is related to the problem of optimal scaling of the subproblems in Vai

which does 
not have a trivial solution in general (see [24,25] for recent discussions of the scaling 
aspect).

If we choose equal γi = λmax as in (18), then (28) implies the estimate

E(‖u− uj‖2
a) ≤ (1 − c0

Nκ
)j‖u− u0‖2

a, j ≥ 1,

where c0 = ω(2 − ω) ≤ 1. Therefore, N steps of this randomized multiplicative Schwarz 
iteration correspond to one sweep, and thus comparable to one step of the additive 
Schwarz iteration (9), the expected square energy error reduction is roughly bounded by 
a constant factor

(1 − 1/(Nκ))N ≈ e−1/κ ≈ 1 − 1/κ, (29)

if κ >> 1 and ω = 1. This is qualitatively as good as the estimate (14). Note that 
(28)–(29) represent upper bounds for the expected convergence rate, whereas (14) is 
asymptotically sharp and deterministic. The estimate (28) is superior to (14) if 

∑
i γi <<

Nλmax.
We present next a more general block-random Schwarz iteration, the j-th step of which 

is as follows: Instead of picking a single index ij ∈ {1, . . . , N}, we now pick (randomly 
and uniformly, and independently for different j) a whole index set Ij ⊂ {1, . . . , N} of 
size kj ∈ {1, . . . , N}, and update according to

uj+1 = uj + ωj

∑
i∈Ij

RiTie
j . (30)

The case kj = 1 corresponds to (15) with random ordering, while kj = N is equivalent 
to (9).
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Theorem 3. Assume that (3) is a stable space splitting of the Hilbert space Va, with 
stability constants λmin / max and condition number κ given by (4). Assume ωj = ω ∈
(0, 2/λmax), and let the random index sets Ij of size kj be generated as described above.

Then the modified Schwarz iteration (30) converges in expectation, and the expected 
error decays according to

E(‖u− uj+1‖2
a) ≤

(
1 − C1kj

Nκ

)
E(‖u− uj‖2

a), j ≥ 0, (31)

where C1 = ωλmax(2 − ωλmax) ∈ (0, 1].

Proof. For the following calculations, recall that a(v, Rivi) = ai(Tiv, vi) for all v ∈ Va

and vi ∈ Vai
, and that (17) holds for any γ ≥ λmax. For given uj , ωj , and a randomly 

chosen Ij according to (30) we have

‖ej+1‖2
a = a(ej − ω

∑
i∈Ij

RiTie
j , ej − ω

∑
i∈Ij

RiTie
j)

= ‖ej‖2
a − 2ω

∑
i∈Ij

a(ej , RiTie
j) + ω2a(

∑
i∈Ij

RiTie
j ,
∑
i∈Ij

RiTie
j)

≤ ‖ej‖2
a − 2ω

∑
i∈Ij

ai(Tie
j , Tie

j) + ω2λmax
∑
i∈Ij

ai(Tie
j , Tie

j)

= ‖ej‖2
a

(
1 − ω(2 − ωλmax)

∑
i∈Ij

ai(Tie
j , Tie

j)
‖ej‖2

a

)

= ‖ej‖2
a

(
1 − C1

λmax

∑
i∈Ij

ai(Tie
j , Tie

j)
‖ej‖2

a

)
,

where in the inequality step (17) was used. Now recall that Ij ⊂ {1, . . . , N} is a uniformly 
chosen random subset of kj indices. This, and the inequality

λmina(v, v) ≤ a(Pv, v) =
N∑
i=1

ai(Tiv, Tiv) ∀ v ∈ Va,

implied by the lower spectral bound of P , give the following bound for the conditional 
expectation of ‖ej+1‖2

a, given the current error ej:

E(‖ej+1‖2
a | ej) ≤ ‖ej‖2

a

(
1 − C1

λmax

kj

N

∑N
i=1 ai(Tie

j , Tie
j)

‖ej‖2
a

)

≤ (1 − C1kjλmin

Nλmax
)‖ej‖2

a = (1 − C1kj
Nκ

)‖ej‖2
a.

Taking expectations with respect to ej on both sides, we arrive at (31). Theorem 3 is 
established. �



146 P. Oswald, W. Zhou / Linear Algebra and its Applications 478 (2015) 131–161
Remarks. 3) Taking into account that one update step (30) is essentially equivalent to 
kj single steps in (15), the upper bound (31) leads to an expected error reduction per 
sweep comparable with (29). Indeed, assuming kl/(Nκ) << 1 the guaranteed relative 
error reduction factor after j-steps of the block-random Schwarz iteration (30) is given by

j∏
l=1

(1 − C1kl−1

Nκ
) ≈ (1 − C1(k0 + . . . + kj−1)

Nκ
).

The numerical experiments reported in Section 4 are confirming this.
4) As already noted, relaxation can boost convergence. However, there is no general 

recipe for choosing ωj optimally. For the considered random iterations, computing ωj by 
the steepest decent formula

ωj = a(ej , wj)
a(wj , wj) , ej = u− uj , (32)

in an update step of the form uj+1 = uj + ωjw
j is a provably good alternative. This is 

because steepest decent guarantees maximal error reduction in the given search direc-
tion wj , and thus any of the above recursive estimates for expected square errors will 
hold, with best possible constants, for the steepest decent update as well.

5) Although the presented Schwarz iteration framework is essentially equivalent to 
ADM, it is more constructive by emphasizing the component structure of the iterations, 
and suggests optimization rules. Indeed, in order to arrive at efficient methods, one needs 
to have an as small as possible condition number κ of the underlying space splitting and, 
at the same time, cheap components (execution of Ti, involving residual computations 
and subproblem solves, and Ri). In many problems, slow convergence is due to bad 
conditioning of the space splitting underlying the given iterative method, and can only 
be cured by some kind of preconditioning, e.g., by changing the splitting. For elliptic 
PDE solvers, this approach has been proven very successful. Another aspect is to realize 
that the auxiliary spaces Vai

need not form direct sum decompositions nor be even 
subspaces of Va, and that the subproblems defined by the auxiliary forms ai(·,·) may 
not be directly related to the original problem (2). E.g., in applications to solving linear 
systems we may easily allow for overlapping block covers rather than block partitions 
of A, and approximate subproblem solves.

3. Applications to Kaczmarz iterations

In order to apply the Schwarz iteration theory based on a Hilbert space setting for the 
solution (in a least-square sense) of a linear system Ax = b with arbitrary A ∈ C

m×n, 
one usually considers the normal equations AHAx = AHb, or the system AAHy = b, 
each having Hermitian positive semi-definite coefficient matrices. The latter formulation 
is behind the Kaczmarz-type algorithms considered in this section. Our goal is to demon-
strate how various recent results on Kaczmarz-type iterations [6,1,4,5,3] can be obtained 
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in a unified way from the convergence theory for Schwarz iterative methods outlined in 
Section 2 by applying it to the space splittings of Examples 2 and 3. In addition, we 
provide an improved convergence rate estimate for cyclic orderings.

3.1. Kaczmarz methods: single row updates

It is convenient to first consider the special case of a consistent system Ax = b

with b ∈ Ran(A). Such a system has the general solution x = xLS + x̂, where xLS ∈
Ran(AH) is the least-squares solution and x̂ ∈ Ker(A) is arbitrary. The general case 
will be considered at the end of this section. Example 2 of Section 2.1 is the space 
splitting which provides the framework for analyzing Kaczmarz methods with single row 
updates as multiplicative Schwarz method. Using the notation introduced in Section 2, 
a straightforward computation leads to Tix = d−1

i aix for x ∈ Va and all i = 1, . . . , m. 
Thus, Tie

j = Ti(xLS − xj) = d−1
i (bi − aix

j), and (15) specializes to

xj+1 = xj + ωj

bij − aijx
j

dij
aHij , (33)

which is identical with the Kaczmarz iteration (1) if the diagonal scaling is set to 
di = ‖ai‖2

2.
Throughout the rest of this section we will silently assume that the starting vector of 

the iterations satisfies x0 ∈ Va. Indeed, for arbitrary x0, it is obvious from the update 
formula (33) that

xj = x̃j + x̂0,

where x0 = x̃0 + x̂0 is the orthogonal decomposition of the starting vector into x̃0 ∈ Va

and x̂0 ∈ V ⊥
a = Ker(A), and x̃j denotes the iterates with starting vector x̃0. Thus, since 

under the conditions discussed below the iterates x̃j converge to xLS , we have xj →
xLS + x̂0, and all convergence rate estimates stay in place with x̂0 properly subtracted. 
Choosing x0 = 0 is a universally safe choice.

Convergence estimates: cyclic orderings. Consider the cyclic ordering ij = j (mod m) +1, 
j ≥ 0, and choose a constant relaxation parameter ωj = ω. Under the above assumptions 
on b and x0, Theorem 1 implies that the Kaczmarz iterates xj defined by (33) converge 
to the least-squares solution xLS of Ax = b for 0 < ω < 2/λmax, with an error decay 
rate given by (19). Moreover, as a consequence of (20) and (5), the error decay after 	
sweeps is given by

‖xLS − x̄�‖2
2 ≤

(
1 − 1

H −1

)�

‖xLS − x0‖2
2, 	 ≥ 1, (34)
(�log2(2m)
 + 1)κ̄(A D A)
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if ω is chosen appropriately, e.g., according to (27). We are not aware of any appearance 
of such an error decay estimate in terms of κ̄(AHD−1A) and logarithmically depending 
on the dimension m of A in the literature.

One may, however, wonder if the estimate (34) can be improved if r := rank(A) =
dimVa << m. The answer is yes, and may be interesting in cases when the original 
system Ax = b is heavily overdetermined.

Theorem 4. The cyclic Kaczmarz iteration (33) with appropriately chosen relaxation 
parameter ω and row scaling induced by D for solving a linear system Ax = b with 
rank(A) = r ≤ min(n, m) possesses an error bound

‖xLS − x̄�‖2
2 ≤

(
1 − C

(ln(r) + 1)κ̄(AHD−1A)

)�

‖xLS − x0‖2
2, 	 ≥ 1, (35)

where C is an absolute constant.

Proof. Following step by step the proof of Theorem 1 applied to our situation, one easily 
sees that (35) follows if the inequality (24) is replaced by the estimate

‖LB‖2 ≤ C(1 + ln(r))‖B‖2, (36)

applied to the matrix B = AD−1AH playing the role of P̃ . Here, LB denotes the strictly 
lower-triangular part of B, and ‖ ·‖2 stands for the 	2-induced matrix norm. We will show 
that (36) indeed holds with some absolute constant C for arbitrary positive semi-definite 
Hermitian matrices B of rank r.

Without loss of generality, assume that ‖B‖2 = λ1 = 1, where λ1 ≥ λ2 ≥ . . . ≥ λr > 0
and λk = 0 for k = r + 1, . . . , m are the eigenvalues of B. The main ingredient is an 
estimate for the Schatten p-norm ‖L‖σ,p of strictly lower-triangular matrices L:

‖L‖σ,p ≤ C0p‖L + LH‖σ,p, 2 ≤ p < ∞,

where C0 is an absolute constant, independent of p and m. It follows from Macaev’s 
Theorem proved in a more general setting in, e.g., [26, Theorem 6.2], where also estimates 
for C0 are given. Recall that the Schatten p-norm of a matrix is defined as the 	p norm 
of its singular values. Thus, if DB denotes the diagonal part of B then

‖DB‖σ,p = (
m∑
i=1

|bii|p)1/p ≤ (
m∑
i=1

bii)1/p = (
r∑

j=1
λj)1/p ≤ r1/p.

Here we have used that 0 ≤ bii ≤ λ1 = 1. Similarly,

‖B‖σ,p = (
r∑

λp
j )

1/p ≤ r1/p.

j=1
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Combining the last three inequalities, we obtain

‖LB‖2 ≤ ‖LB‖σ,p ≤ C0p‖LB + LH
B ‖σ,p ≤ C0p(‖B‖σ,p + ‖DB‖σ,p) ≤ 2C0pr

1/p.

Choosing here p = ln(r), and taking into account the trivial bound

‖LB‖2 ≤ ‖LB‖F ≤ 1√
2
‖B‖F = 1√

2
‖B‖σ,2 ≤

√
r

2 ,

establishes (36) for all r, and proves the statement of Theorem 4. �
Convergence estimates: random orderings. We now apply Theorems 2 and 3. For the 
splitting from Example 2, we have γi := d−1

i ‖ai‖2
2, i = 1, . . . , m. Theorem 2 suggests the 

selection of the random index sequence I using the discrete probability distribution

pi = γi
γ1 + . . . + γm

= ‖ai‖2
2

di‖D−1/2A‖2
F

, i = 1, . . . ,m, (37)

and the update formula

xj+1 = xj + ω
bij − aijx

j

‖aij‖2
2

aHij , (38)

i.e., again (1) with fixed ωj = ω ∈ (0, 2). The expected square error estimate then reads

E(‖xLS − xj‖2
2) ≤

(
1 − ω(2 − ω)σ2

min(D−1/2A)
‖D−1/2A‖2

F

)j

‖xLS − x0‖2
2, j ≥ 1, (39)

which can be upper-bounded for ω = 1 by

E(‖xLS − xj‖2
2) ≤

(
1 − 1

rκ̄(AHD−1A)

)j

‖xLS − x0‖2
2, j ≥ 1, (40)

where r = dimVa ≤ min(n, m). For di = 1, (39) is the result of [6], the introduction of 
a diagonal scaling has also been discussed there. Recall that for a fair comparison of the 
error estimates for cyclic versus random orderings, we need to combine m steps of the 
randomized iteration into one sweep, yielding a reduction factor of the expected square 
error per sweep of approximately ≈ 1 − cm/(rκ) in the randomized iteration, compared 
to a reduction of the square error per sweep of 1 −C/((ln(r) + 1)κ) for cyclic ordering, 
where κ = κ̄(AHD−1A).

Finally, for the application of Theorem 3, assume for simplicity constant ωj = ω. Then 
the update formula (30) reads

xj+1 = xj + ωwj , wj :=
∑ bi − aix

j

di
aHi , (41)
i∈Ij
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where Ij ⊂ {1, . . . , m} is a uniformly and independently chosen random index set of 
size kj , and the error estimate per step (31) for the expected squared error gives

E(‖xLS − xj+1‖2
2) ≤

(
1 − kj

mκ̄(AHD−1A)

)
E(‖xLS − xj‖2

2), j ≥ 0, (42)

if we set ω = 1/λmax.
As was remarked in Section 2.4, the estimates (39), (40), and (42) remain true if ωj

is determined from the steepest descent rule (32). This makes any preknowledge about 
λmax superfluous.

Inconsistent systems. The inconsistent (or noisy) case b /∈ Ran(A) is practically impor-
tant (note that in principal, due to rounding errors, any system Ax = b needs to be 
considered inconsistent). Let b̂ be the projection of b onto Ker(AH) ⊥ Ran(A), and set 
b̃ = b − b̂. Using the decomposition b = b̂ + b̃ and the fact that Ax = b̃ is a consis-
tent system with the same least-squares solution xLS as Ax = b, we can easily extend 
the analysis to the inconsistent case. E.g., according to (33), in the cyclic case we can 
write

xj+1 = xj + ω
b̃ij − aijx

j

dij
aHij +

ωb̂ij
dij

aHij ,

which gives an inhomogeneous recursion for the error ej = xLS − xj of the form

ej+1 = ej − ω
aije

j

dij
aHij −

ωb̂ij
dij

aHij ,

where ij = j (mod m) + 1, j ≥ 0. Thus, when combining the first m steps, we get ē1 =
Qe0 +Rb̂ with certain matrices Q, R depending on A, D, and ω. Under the assumptions 
of Theorem 1, Q is contractive on Ran(AH) and obviously Ran(R) ⊂ Ran(AH). Thus,

ē� = Q�e0 + (I + Q + . . . + Q�−1)Rb̂,

and the iterates xj converge to xLS − (I − Q)−1Rb̂, still under the assumption that 
x0 ∈ Va = Ran(AH). The error estimate after 	 cyclic sweeps is

‖xLS − x̄�‖2 ≤ ‖Q‖�2‖xLS − x0‖2 + ‖Rb̂‖2

1 − ‖Q‖2
, x̄� = x�m,

where, according to Theorem 4 the spectral norm of Q : Va → Va is bounded by

‖Q‖2
2 ≤ 1 − C

H −1 .
(ln(r) + 1)κ̄(A D A)
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Thus the iteration converges to a point that sits in a ball of radius proportional to ‖b̂‖2
around xLS (see [10, Theorem 4.32] for a formula expression of the limit).

A similar approach applies to the random Kaczmarz iteration resulting from Theo-
rem 2. Indeed, the error recursion for the update (38) can be written as

ej+1 =
(
ej −

aije
j

‖aij‖2
2
aHij

)
+

(1 − ω)aijej − ωb̂ij
‖aij‖2

2
aHij ,

with the two terms orthogonal to each other. Thus, a quick computation shows

‖ej+1‖2
2 = (‖ej‖2

2 −
|aijej |2
‖aij‖2

2
) +

|(1 − ω)aijej − ωb̂ij |2
‖aij‖2

2
.

For ω = 1 (this is the case covered in [1]), we continue with computing the conditional 
expectation of ‖ej+1‖2

2 with respect to given ej, recall that the probability distribution 
underlying the choice of ij is given by (37):

E(‖ej+1‖2
2 | ej) ≤ ‖ej‖2

2 −
m∑
i=1

|aiej |2
di‖D−1/2A‖2

F

+
m∑
i=1

|b̂i|2
di‖D−1/2A‖2

F

≤
(

1 − ‖D−1/2Aej‖2
2

‖ej‖2
2‖D−1/2A‖2

F

)
‖ej‖2

2 + ‖D−1/2b̂‖2
2

‖D−1/2A‖2
F

≤
(

1 − σ2
min(D−1/2A)
‖D−1/2A‖2

F

)
‖ej‖2

2 + ‖D−1/2b̂‖2
2

‖D−1/2A‖2
F

.

Taking the expectation with respect to ej , we get

E(‖ej+1‖2
2) ≤

(
1 − σ2

min(D−1/2A)
‖D−1/2A‖2

F

)
E(‖ej‖2

2) + ‖D−1/2b̂‖2
2

‖D−1/2A‖2
F

, j ≥ 0,

and iterating this inequality results in

E(‖xLS − xj‖2
2) ≤

(
1 − σ2

min(D−1/2A)
‖D−1/2A‖2

F

)j

‖xLS − x0‖2
2 + ‖D−1/2b̂‖2

2
σ2

min(D−1/2A)
, j ≥ 1.

For ω �= 1, one can first use the elementary inequality

(a + b)2 ≤ (1 + t)a2 + (1 + 1
t
)b2, a, b, t > 0,

with

t = (1 − C2)
ω(2 − ω)

2 , a =
(1 − ω)|aijej | , b =

ω|b̂ij | , 0 < C2 < 1,
(1 − ω) ‖aij‖2 ‖aij‖2
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and then repeat the computation of expectations. This leads to a slightly worse recursive 
estimate

E(‖ej+1‖2
2) ≤

(
1 − C2ω(2 − ω)σ2

min(D−1/2A)
‖D−1/2A‖2

F

)
E(‖ej‖2

2)

+ (1 − C2)ω(2 − ω)ω‖D−1/2b̂‖2
2

(1 − C2)(2 − ω)‖D−1/2A‖2
F

,

j ≥ 0, but a similar conclusion: For inconsistent systems, the random Kacmarz iteration 
stabilizes in expectation (at almost the same linear convergence rate as in the consis-
tent case) into a ball around xLS with radius proportional to ‖D−1/2b̂‖2 measuring the 
inconsistency of the right-hand side b. Similar arguments can be provided for the block-
random Kaczmarz iteration covered by Theorem 3 and for the block-Kaczmarz iterations 
discussed in the next subsection.

3.2. Kaczmarz methods: block updates and least-squares solvers

Block-iterative methods for general linear systems [27] often lead to better cpu-time 
efficiency in implementations, even though this cannot always be substantiated theo-
retically. In the language of ADM, this means to go away from one-dimensional search 
directions given by the columns of AH (and projections onto hyperplanes), and replace 
them by more general search directions or subspace search. For reasons explained in the 
previous subsection, we can w.l.o.g. assume that Ax = b is consistent, i.e., b ∈ Ran(A), 
and that x0 ∈ Ran(AH).

Block-Kaczmarz iterations based on a row partitioning T as introduced in Example 3 
have been proposed in slightly more general form in [27], the update formula reads

xj+1 = xj + ωjA
†
τkj

(bτkj
−Aτkj

xj). (43)

The more recent papers [4] and [5, Algorithm 1] deal with randomized versions, under the 
assumption that the row partition T leads to invertible and well-conditioned matrices 
AτkA

H
τk

. It is easy to check that the iteration (15) based on the splitting from Example 3 
leads to exactly the update formula (43), which allows us to deduce convergence results 
for both cyclic and randomized block-Kaczmarz iterations from the theorems in Section 2. 
In particular, for the cyclic ordering kj = j (mod K) +1, j ≥ 0, we obtain from Theorem 1
that

‖xLS − x̄�‖2
2 ≤

(
1 − 1

(�log2(2K)
κT

)�

‖xLS − x0‖2
2,

where x̄� = x�K , 	 ≥ 1, if ω is chosen properly. Here, κT is the condition number of the 
splitting in Example 3. Similarly, since for this splitting obviously γk = 1, k = 1, . . . , K, 
Theorem 2 implies
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E(‖xLS − xj‖2
2) ≤

(
1 − λmin,T

K

)j

‖xLS − x0‖2
2, j ≥ 1,

for the randomized block-Kaczmarz iteration with underlying uniform probability dis-
tribution and relaxation parameter ω = 1. The estimate remains valid if ωj is computed 
by the steepest descent formula. As was mentioned in Section 2.1, the stability constants 
λmax / min,T are hard to assess for general row partitions T . For T satisfying (6), the 
estimation of the condition number κT leading to (7) reveals that λmin,T ≥ σ2

min(A)/β, 
and we arrive at exactly the result of [4, Theorem 1.2] for the consistent case (the incon-
sistent case b /∈ Ran(A) can be handled as described in Section 3.1). We refer to [4] for 
a discussion of the state of the art of finding partitions T with properties close to (6).

Our approach can be used to design and analyze other block iterations. For instance, 
if we change in Example 3 the auxiliary spaces to Vak

= C
|τk|, and the auxiliary scalar 

products to ak(yτk , yτk) =
∑

i∈τk
di|yτk,i|2 but keep all other components of the space 

splitting as they are, then it is not hard to see that the stability constants and condi-
tion numbers for this modified space splitting coincide with those of the splitting from 
Example 2, in particular, κ = κ̄(AHD−1A). Since Tkx = (D−1A)τkx, we get the update 
formula

xj+1 = xj + ωAH
τkj

D−1
τkj

(bτkj
−Aτkj

xj), kj = j (mod K) + 1, (44)

for cyclic orderings, and an error estimate of

‖xLS − x̄�‖2
2 ≤

(
1 − 1

(�log2(2K)
 + 1)κ̄(AHD−1A)

)�

‖xLS − x0‖2
2,

where again x̄� = x�K , 	 ≥ 1, and ω is chosen properly.
For random orderings, the update reads

xj+1 = xj + ω

γkj

AH
τkj

D−1
τkj

(bτkj
−Aτkj

xj), j ≥ 0, (45)

and k = kj is picked from the index range {1, . . . , K} according to the probability distri-
bution pk = γk/(γ1 + . . .+γK), where γk = ‖(D−1/2A)τk‖2

2, k = 1, . . . , K. The difference 
of the update in (45) with the similar update formula (41) obtained from Theorem 3 is 
that there we choose uniformly randomly an arbitrary subset Ij ⊂ {1, . . . , m}, whereas 
now we only pick randomly an index subset among the subsets τk from a fixed parti-
tion T . However, the estimates for the expected square error are similar. Indeed, the 
application of Theorem 2 to the iteration (45) yields

E(‖xLS − xj‖2
2) ≤

(
1 − ω(2 − ω)σ2

min(D−1/2A)∑K ‖(D−1/2A) ‖2

)j

‖xLS − x0‖2
2, j ≥ 1,
k=1 τk 2
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if ω ∈ (0, 2). Again, this is not too explicit as the constants γk depend on the partition T , 
it is, however, worth mentioning that

σ2
max(D−1/2A) ≤

K∑
k=1

‖(D−1/2A)τk‖2
2 ≤ ‖D−1/2A‖2

F .

We conclude this subsection with a few remarks on obtaining the least-squares solution 
xLS = A†b for inconsistent linear systems Ax = b, where the Kaczmarz-type algorithms 
discussed so far converge only to a point in a neighborhood of xLS of radius proportional 
to the distance of b to Ran(A). One work-around are the algorithms proposed in [3,5]
which are based on applying Kaczmarz-type iterations in an alternating fashion to the 
block-triangular system

Ax = b− y, AHy = 0,

with starting vectors x0 = 0, y0 = b. According to the above theory, the iterates yj
converge to b̂ (the projection of b onto Ker(AH)), and since b − b̂ ∈ Ran(A) as well as 
x0 ∈ Ran(AH), the iterates xj must converge to xLS . The following extended randomized 
Kaczmarz method was proposed and analyzed in [3]: Given x0, y0, for j = 0, 1, . . . , 
choose a column ākj

of A, where kj ∈ {1, . . . , n} are i.i.d. random variables with discrete 
probability distribution qk = ‖āk‖2

2/‖A‖2
F , k = 1, . . . , n, and set

yj+1 = yj − ω
āHkj

yj

‖ākj
‖2
2
ākj

. (46)

Next, choose a row aij of A, where ij ∈ {1, . . . , m} is an i.i.d. random variable with 
discrete probability distribution pi = ‖ai‖2

2/‖A‖2
F , i = 1, . . . , m, and update

xj+1 = xj + ω
bij − aijx

j − yjij
‖aij‖2

2
aHij . (47)

A block version of this algorithm has been considered in [5], where it is assumed that 
both A and AH admit, after respective column and row scaling, pavings with constants 
α, β in the corresponding assumptions (6) such that β/α ≈ 1, thus fitting the discussion 
of the block-Kaczmarz iterations in the previous subsection. Cyclic versions are possible 
as well: One would perform a full sweep for AHy = 0 to update from ȳ� to ȳ�+1, fol-
lowed by a full sweep for Ax = b − y� (or, equally well for Ax = b − y�+1) to update 
from x̄� to x̄�+1. Finally, instead of alternating between y and x updates, one can also 
leave the decision to the randomization process: In the j-th step, with equal probability, 
choose first whether to update xj or yj . For an x-update, compute xj+1 according to 
the instructions in (47) and set yj+1 = yj while for a y-update yj+1 is obtained by (46)
and xj+1 = xj . The analysis of all these versions for finding xLS can be done using 
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the framework of Schwarz iterative methods using appropriate splittings, with the addi-
tional advantage that this theory also provides convergence estimates if cyclic orderings 
are preferred.

4. Numerical tests

In this section we illustrate some of the main results of this paper, in particular, the 
convergence bounds for Kaczmarz iterations with cyclic ordering in comparison with 
random orderings, by numerical experiments. Test matrices from three families of ma-
trices are considered below. The first one (referred to as Toeplitz matrices) is taken 
from [28], and consists of finite m ×n sections A = ((Aj−k))j=1,...,m, k=1,...,n of a Hermi-
tian positive-definite Toeplitz operator on 	2(Z) given by the sequence

A0 = 1, A2k = 0, A±(2k−1) = c0(−1)k−1

2k − 1 , k = 1, 2, . . . , 0 < c0 <
2
π
.

We have chosen c0 = 0.2 in our tests. All matrices A chosen from this family have full 
rank r = min(m, n), and are well-conditioned with almost constant condition numbers 
κ̄(AHA) ≈ 3.671.

The second family (referred to as Fourier matrices) originates from the classical prob-
lem of reconstructing 1-periodic band-limited functions from samples at non-uniformly 
spaced points, and was already used in, e.g., [6]. Let A be defined by its entries as

Ajk = √
wje

2πiktj , wj = tj+1 − tj−1

2 ,

where {tj}j=1,...,m is an increasing sequence of non-uniformly spaced sampling points 
in the periodic unit interval drawn from a uniform distribution, and k = −K, . . . , K
(i.e., n = 2K + 1). As was justified in [6], the introduction of the above weight fac-
tors wj , and a sufficiently large oversampling rate m/n >> 1 guarantee that condition 
numbers fall in a reasonable range. In our experiments, we chose K = 50 and m = 500, 
and generated A of size 500 × 101, with full column rank r = n = 101, and with 
κ̄(AHA) ≈ 312.5.

Finally, a third family (referred to as Tomography matrices) was generated using 
the Matlab Regularization Toolbox by P.C. Hansen, described in [29] and available at 
http://www.imm.dtu.dk/~pcha/Regutools/. Its routine tomo allows for the generation 
of certain 2D tomography problems Ax = b of size m = fN2 by n = N2, where N and 
the oversampling rate f are user-supplied constants. Each row in A corresponds to the 
absorption characteristics along a randomly placed line through a N × N box grid. In 
our tests, we chose N = 20 and various values for f (below, results are reported only 
for f = 3). Again, if the oversampling rate f is significantly larger than 1, the condition 
number κ̄(AHA) tends to become reasonably small while for f ≈ 1 it may become very 
large, mostly due to a few very small non-zero singular values of A.

http://www.imm.dtu.dk/~pcha/Regutools/


156 P. Oswald, W. Zhou / Linear Algebra and its Applications 478 (2015) 131–161
In our experiments with the first two families, we solved the homogeneous problem 

Ax = 0 with a starting unit vector x0 in Ran(AH), hence the iteration converges to 

xLS = 0. The vector x0 is randomly chosen but kept fixed in all experiments, thus the 

results are comparable. For the third family, we solved the consistent problem Ax = b

with b and x = xLS supplied by the routine tomo. Our primary index of performance 

measurement is the number of sweeps or cycles needed to reach a given precision level 
(measured by relative error). The cycle count is defined as number of single row updates 
divided by m for the standard Kaczmarz iteration, and analogously as number of block 

updates multiplied by k/m for block-Kaczmarz iterations with constant block size k. 
Finally, unless otherwise specified, the shown graphs depict always the average of 5
independent experiments whenever the iteration involves random row/block selection or 
random row permutations.

Our tests concentrate on the following questions related to the theoretical material of 
this paper:

1) Our convergence rate estimates for multiplicative Schwarz iterations, and in par-
ticular Kaczmarz iterations, with cyclic orderings deteriorate logarithmically in the 

number of subproblems resp. the rank of A (Theorems 1 and 4). That such a deteri-
oration cannot be excluded, is shown by tests with the first family of matrices. For 
the other matrix families related to more natural recovery problems from sampled 

information, such an effect is not visible.
2) The actual convergence of the cyclic iteration depends on the ordering of equations 

in Ax = b although the convergence bounds in Theorems 1 and 4 do not reflect this: 
Premultiplying the system by any m ×m permutation matrix Pπ neither changes the 

rank r nor the condition number κ̄(AHA). We have tested the behavior of Kaczmarz 

iterations with cyclic ordering after a random row permutation was applied (random 

row shuffling followed by Kaczmarz iteration with cyclic ordering). Such a simple 

preprocessing leads to results at least as good as achieved by iterations with random 

orderings.
3) We also implemented randomized block-Kaczmarz iterations, where in each step we 

chose, uniformly at random, row subsets of fixed but small size k > 1, and per-
formed updates of the form (44) (called for short Jacobi updates) or (43) (called 

for short least-squares updates). In the reported tests, due to the lack of good in-
formation on the scaling constants γi, we have defined relaxation parameters by the 

steepest decent formula (32). The main observation is that, at least for the consid-
ered families of problems and relatively small block size k, the different randomized 

block-Kaczmarz iterations possess similar convergence behavior but do not outper-
form standard Kaczmarz iterations in relation to the overall number of rows touched 

during the iteration process.
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Fig. 1. Necessity of the logarithm factor.

4.1. The logarithmic factor

In the first experiment (Fig. 1 (a)), we applied the Kaczmarz iteration with cyclic 
ordering to linear systems with square matrices A of sizes 40 × 40, 160 × 160, 640 × 640
from the first family (Toeplitz matrices). As the matrix size quadruples, a linear decay 
of the error reduction rate can be clearly observed. Since the condition numbers for 
the matrices from this family remain almost perfectly constant, this demonstrates the 
necessity of the logarithmic factor in the error estimate of Theorem 2.

The second experiment (Fig. 1 (b)) aims at illustrating the relevance of the ln(r)
factor in Theorem 4. We applied the cyclic Kaczmarz method to A from the first family 
(Toeplitz matrices) with variable row dimension 20 ≤ m < 800 but fixed column dimen-
sion n = 20, 80, 320 respectively, and recorded the cycles needed for the error norm to 
drop below 10−10. It can be clearly seen that the error reduction rate is dependent on 
the rank r = min(m, n).

4.2. Row shuffling

As mentioned before, the error decay bound for cyclic orderings stated in Theorem 4
is invariant under row shuffling. However, the actual convergence rates may well change, 
as the lower triangular matrix LAAH crucially enters the estimates and depends on row 
permutation. We did experiments on both the first (Toeplitz matrix of size 640 × 640) 
and second (Fourier matrix of size 500 × 101) family of matrices, in each of the 50
recorded experiments we used cyclic iteration but with different fixed row ordering. 
As a comparison we also included experiments using the random Kaczmarz iteration 
described in Theorem 2. For both families of matrices, one-time row shuffling followed 
by cyclic Kaczmarz iteration outperforms the cyclic Kaczmarz iteration in the initially 
given order, and is even better than the random Kaczmarz iteration (see Fig. 2). This 
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Fig. 2. Improvement by row shuffling.

experiment suggests that a simple preprocessing step of a one-time row shuffling before 
cyclic iteration, especially in applications where we are not sure if the given ordering is 
optimal, may lead to performance as good as for iterations with more sophisticated or 
costly randomization strategies. Since one cycle of the Kaczmarz iteration after random 
row shuffling is equivalent to a cycle of a Kaczmarz iteration where indices are chosen 
randomly but without repetition, this is in line with the often observed behavior of 
randomized iteration schemes with and without repetition, see [30] for a discussion of 
this aspect.

4.3. Block iterations

In Fig. 3 (a) and (b), we show error decay graphs for block-Kaczmarz iterations for the 
640 × 640 Toeplitz matrix, and another matrix from the second family (Fourier matrix) 
respectively. We implemented (44) and (43), both with fixed block-size kj = k = 3, 6, 12, 
and randomly chosen τkj

. The first version (Jacobi update) is based on Theorem 3, and 
uses Bτkj

= AH
τkj

, the second (least-squares update) uses Bτkj
= A†

τkj
as suggested 

in [4,5]. In both cases, ωj is chosen according to the steepest descent rule, i.e., ωj = 1
for the least-squares update, and

ωj = ‖rj‖2
2

‖AH
τkj

rj‖2
2
, rj := bτkj

−Aτkj
xj ,

for the Jacobi update.
The results for the Jacobi update case are in full agreement with the bounds given 

in Theorem 3, for small block-sizes k = kj the cycle count for reaching a certain error 
reduction only slightly increases with k. Moreover, for this range of k, the two methods 
are of comparable performance and cost. Note that, to our knowledge, there is no theo-
retical convergence rate bound available for the implemented version with least-squares 



P. Oswald, W. Zhou / Linear Algebra and its Applications 478 (2015) 131–161 159
Fig. 3. Block iteration.

Fig. 4. Iterations on Tomography matrix.

updates. One can only speculate that this method becomes more competitive as kj is 
chosen larger, at the expense of increased computational cost compared to the simpler 
Jacobi updates.

4.4. Tomography matrices

For the tests illustrated by Fig. 4, we generated a matrix A of size 1200 × 400 and 
with condition number κ̄(AHA) ≈ 625 from the tomography family using the routine
tomo with parameters N = 20 and f = 3. As shown in Fig. 4 (a), in contrast to the 
previously reported findings, the cyclic Kaczmarz iteration (without any row shuffling) 
behaves as good as shuffled versions. The reason might be that the rows of matrices 
created by tomo are already shuffled, as they result from taking intensity measurements 
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along a set of randomly chosen lines crossing a two-dimensional grid. The tests with 
block-Kaczmarz iterations reported in Fig. 4 (b) are in line with the observations from 
the previous subsection.
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