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Abstract When iteratively solving linear systems By = b with Hermitian positive
semi-definite B, and in particular when solving least-squares problems for Ax = b by
reformulating them as AA∗y = b, it is often observed that SOR type methods (Gauß-
Seidel, Kaczmarz) perform suboptimally for the given equation ordering, and that
random reordering improves the situation on average. This paper is an attempt to pro-
vide some additional theoretical support for this phenomenon. We show error bounds
for two randomized versions, called shuffled and preshuffled SOR, that improve
asymptotically upon the best known bounds for SOR with cyclic ordering. Our results
are based on studying the behavior of the triangular truncation of Hermitian matrices
with respect to their permutations.

Mathematics Subject Classification 65F10 · 15A60

1 Introduction

In this paper, we discuss the influence of the equation ordering in a linear system
By = b on deriving upper bounds for the convergence speed of the classical successive
over-relaxation (SOR)method.We assume that B is a complexn×nHermitian positive
semi-definite matrix with positive diagonal part D. If we write B = L + D + L∗,
where L denotes the strictly lower triangular part of B and ∗ stands for Hermitian
conjugation, then one step of the classical SOR iteration reads
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y(k+1) = y(k) + ω(D + ωL)−1(b − By(k)), k = 0, 1, . . . . (1)

The classical Gauß-Seidel method for solving By = b emerges if one takes ω = 1. If
one attempts to solve a general linear system Ax = b in the least-squares sense, then
onehas the choice to apply theSORmethod to either the normal equation A∗Ax = A∗b
or to AA∗y = b. In the latter case, the algorithm resulting from applying (1) to
B = AA∗ is equivalent to the Kaczmarz method (here approximations to the solution
of Ax = b are recovered by setting x (k) = A∗y(k)), see [6].

Tomake the papermore readable and avoid technical detail, wemake two additional
assumptions. First,we consider only consistent systems (b ∈ Ran(B)). This guarantees
convergence of (1) for any 0 < ω < 2 and any y(0) to a solution of By = b, while
for inconsistent systems the method diverges (this does not contradict the known
convergence of the Kaczmarz method for inconsistent systems Ax = b since the
divergence manifests itself only in the Ker(B) = Ker(AA∗) component of y(k) which
is annihilated when recovering x (k) = A∗y(k)). Secondly, we assume that B has unit
diagonal (D = I ) which can always be achieved by transforming to the equivalent
rescaled system D−1/2BD−1/2 ỹ = D−1/2b (for the Kaczmarz algorithm, one would
simply use row normalization in A). Alternatively, the analysis of the SOR method
can be carried out with arbitrary D > 0, with minor changes in some places, see
[11] for some details. With both approaches, D enters the final results via the spectral
properties of the transformed B or its norm, respectively. Note that with D = I , one
step of (1) consists of n consecutive projection steps onto the i-th coordinate direction,
i = 1, 2, . . . , n, and the method thus becomes an instance of the alternating direction
method (ADM). Unless stated otherwise, these two assumptions are silently assumed
from now on.

Since any positive semi-definite B can be factored, in a non-unique way, as

B = AA∗,

we can always assume that B is produced by some n × m matrix A with unit norm
rows. Denote by r = rank(B) ≤ min(n,m) its rank, the spectral properties of A and
B are obviously related: the non-zero eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr of B are given
by the squares of the non-zero singular values of A. Thus, if we define the essential
condition number κ̄(A) of a matrix as the quotient of its largest and smallest non-zero
singular values then

κ̄ := κ̄(B) = κ̄(A)2 = λ1

λr
.

The unit diagonal assumption D = I for B implies 0 < λr ≤ 1 ≤ λ1 ≤ n. In the
convergence analysis below, we will use the energy semi-norm |y|B = 〈By, y〉1/2 =
‖A∗y‖1/2 associated with B, it is a norm if and only if B is non-singular, i.e., positive
definite. Here, 〈·, ·〉 and ‖ · ‖ denote the usual Euclidian scalar product and norm in
C
n , respectively. Later, we will use the notation ‖ · ‖ also for matrices (then it stands

for their spectral norm) which should be clear from the context and not lead to any
confusion.
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Condition numbers and other spectral properties often enter the asymptotic error
estimates of iterative schemes for solving linear systems, the best known examples
are the standard bounds for the Jacobi-Richardson and conjugate gradient methods
for systems with positive definite B, see e.g., [6]. For the SOR method, such upper
estimates have been established in [10] for non-singular B, and recently improved in
[11] within the framework of the Kaczmarz iteration to include the semi-definite case:

Theorem 1 Let B be a given n × n Hermitian positive semi-definite matrix with unit
diagonal, and assume that By = b is consistent, i.e., possesses at least one solution
ȳ. Then the SOR iteration (1) converges for 0 < ω < 2 in the energy semi-norm
associated with B according to

|ȳ − y(k)|2B ≤ (1 − (2 − ω)ωλ1

(1 + 1
2	log2(2n)
ωλ1)2κ̄

)k |ȳ − y(0)|2B, k ≥ 1. (2)

If B is singular, then for sufficiently small rank r the term 1
2 log2(2n) can be replaced

by the smaller term C0 ln r , where C0 is an absolute constant.

The proof of (2) rests on rewriting the squared energy semi-norm of Qy, where

Q = I − ω(I + ωL)−1B

is the error iteration matrix associated with (1), as

|Qy|2B = |y|2B − ω(2 − ω)‖(I + ωL)−1By‖2 ≤ |y|2B − ω(2 − ω)‖By‖2
‖I + ωL‖2 .

and using a spectral norm inequality for L from [10],

‖L‖ ≤ 1

2
	log2(2n)
‖B‖, (3)

to estimate the term ‖I + ωL‖ ≤ 1 + ω‖L‖. For singular B with small rank r < n,
the estimate (3) has been improved in [11] to

‖L‖ ≤ C0 ln r‖B‖, r ≥ 2, (4)

where C0 is a fixed positive constant. It is well known that the estimate (3) is sharp in
its logarithmic dependency on n, more precisely

bn := sup
B �=0

‖L‖
‖B‖ � 1

π
ln n, n → ∞,

where the supremum is taken with respect to all n × n matrices B, and � stands for
asymptotic equality (see [3,9] for sharp estimates and examples). Similar lower esti-
mates hold also forHermitian positive semi-definitematrices Bwith unit diagonal D =
I , and examples exist that show the necessity of the logarithmic terms in (2), see [10].
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For non-singular B, i.e., when | · |B becomes a norm and the system has full rank
r = n, the outlined idea of proof for Theorem 1 has been carried out in detail in [10].
The changes for singular B are minimal, the proof of (4) for this case can be found in
[11, Theorem 4], see also the proof of Part (b) of Theorem 4 in Sect. 3.

The crucial inequalities (3) and (4), and consequently the error bounds in The-
orem 1, suffer from one serious drawback: they are invariant under simultaneously
reordering rows and columns in B = AA∗ resp. reordering the rows in A. Indeed,
Bσ = Pσ BP∗

σ has the same spectrum and spectral norm as B for any permutation σ

of the index set {1, . . . , n} (Pσ denotes the associated n × n row permutation matrix),
while the spectral properties of the lower triangular part Lσ of Bσ depend on σ . As
a matter of fact, in practice it is often observed (for example, see [5,14,16]) that
reordering improves the convergence behavior of SORmethods as well as other, more
general, alternating directions, subspace correction, and projection onto convex sets
(POCS) methods. The interest in explaining this observation theoretically has been
further stimulated by convergence results for a randomized Kaczmarz iteration in
[13]. In the language of SOR for solving a consistent system By = b with D = I ,
instead of performing the n consecutive projection steps on the i th coordinate that
compose the SOR iteration step (1) in the fixed order i = 1, 2, . . . , n, the method in
[13] performs the projection steps on coordinate directions by randomly selecting i
uniformly and independently from {1, . . . , n} in each single step. For a fair compari-
son with the original SOR iteration (1), and the randomized SOR methods discussed
below, it is appropriate to combine n single projection steps on randomly and inde-
pendently chosen coordinate directions into one iteration step. The iterates y(k) of
this method which we call for short single step randomized SOR iteration are now
random variables. Under the same assumptions as in Theorem 1, the following esti-
mate for the expectation of the squared energy semi-norm error can be deduced from
[13]:

E(|y(k) − y∗|2B) ≤
(
1 − (2 − ω)ωλ1

nκ̄

)kn

|y(0) − y∗|2B, k ≥ 1. (5)

The two upper estimates (2) and (5) are obtained by different techniques, and
although a rough comparison of the upper bounds suggests that the single step ran-
domized SORbeats the original SOR, in practice this is generally not true, and depends
on the given system and the ordering of the equations in it.

In this paper, we consider two different randomization strategies for SOR closer to
the original method. In the first, given the k-th iterate y(k), we choose (independently
and randomly) a permutation σ of {1, . . . , n}, and do one full SOR iteration step (1)
with By = b and y(k) replaced by Bσ yσ = bσ and y(k)

σ = Pσ y(k), where yσ = Pσ y,
bσ = Pσb. Then the original order is restored by setting y(k+1) = P∗

σ y
(k+1)
σ . This

approach which we call for short shuffled SOR iteration is equivalent to a random
ordering without repetition in each sweep of n steps of the single step randomized
SOR iteration. In practice, random ordering without repetition is considered superior
to random ordering with repetition although theoretical proof for this observation
is yet missing, see the conjectures in [4,12]. In [15], where the counterpart of the
shuffled SOR iteration for coordinate descent methods in convex optimization appears
as algorithm EPOCHS, similar statements can be found.
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It is also tempting to investigate the effect of an one-time reordering, followed by the
application of the SOR iteration in the classical, cyclic fashion (we call this preshuffled
SOR iteration). In other words, the preshuffled SOR iteration coincides with a shuffled
SOR iteration if we reuse the randomly generated σ from the iteration step at k = 0
for all further iteration steps at k > 0. Observe that in terms of the Kaczmarz iteration
these two schemes merely correspond to shuffling the rows in the row-normalized
matrix A, i.e., Ax = b is replaced by Pσ Ax = Pσb. The numerical experiments
presented in [11] suggest that shuffled and preshuffled SOR iterations often perform
in expectation equally good, and better than the single step randomized iteration.

The present paper is an attempt to gain some insight into what can be expected
from these randomization strategies. Speaking in mathematical terms, if

Qσ = (I + ωLσ )−1((1 − ω)I − ωL∗
σ ),

denotes the error iteration matrix of the SOR method applied to Bσ yσ = bσ , then we
aim at investigating the quantity

E[|Qy|2B] := 1

n!
∑
σ

|Qσ yσ |2Bσ
, |y|B = 1, (6)

to obtain upper bounds for the expected square energy semi-norm error in the shuffled
SOR iteration.

As was outlined above, obtaining estimates for the norm behavior of Qσ , and of
relevant averages such as (6), must be closely related to studying the behavior of Lσ

which will be at the heart of our considerations in Sect. 2. In particular, we apply
a corollary of the recently proved paving conjecture to show that for any positive
semi-definite B with D = I there is a permutation σ (depending on B) with the
property

‖Lσ ‖ ≤ C1‖B‖, (7)

where C1 is an absolute constant. We further establish that

‖E[LL∗]‖ < ‖B‖2, E[LL∗] := 1

n!
∑
σ

P∗
σ Lσ L

∗
σ Pσ , (8)

which will lead to bounds for (6).
In Sect. 3, we apply the results of Sect. 2 to establish two new error decay bounds

for the above mentioned shuffled SOR iterations. First of all, we show that the quantity
in (6) satisfies

E(|Qy|2B) ≤ (1 − (2 − ω)ωλ1

(1 + ωλ1)2κ̄(B)
)|y|2B,

which implies a bound for the expected square energy semi-norm error decay of the
shuffled SOR iteration that compares favorably with the bounds in Theorem 1, as the
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logarithmic dependence on n and r is removed. Next, we prove using (7) that there
exists a σ such that the preshuffled SOR iteration can achieve the same effect, i.e.,
replacing the 1

2	log2(2n)
 resp. C0 ln r factor by the constant C1 from (7). Although
asymptotic in nature, and in case of the preshuffled SOR iteration due to the currently
available estimates forC1 not yet practical, the bounds established inTheorem4 should
be viewed as theoretical support for the numerically observed convergence behavior
of shuffled and preshuffled SOR iterations.

2 Triangular truncation and reordering

If not stated otherwise, in this section B = L + D + L∗ belongs to Hn , the set of
all n × n Hermitian matrices, with no assumptions on positive semi-definiteness or
normalization of its diagonal elements (i.e., not assuming D = I ). The notation of
Sect. 1 is reused for this slightly more general situation.

Theorem 2 If B ∈ Hn then the average operator E[LL∗] defined in (8) satisfies

‖E[LL∗]‖ ≤ 4‖B‖2.

Moreoever, if D = I and B is positive semi-definite, then (8) holds.

Proof For given B ∈ Hn , set H = L + L∗. Since ‖D‖ ≤ ‖B‖, we have

‖H‖ = ‖B − D‖ ≤ ‖B‖ + ‖D‖ ≤ 2‖B‖, (9)

while for positive semi-definite B

‖H‖ = ‖B − I‖ ≤ max(‖B‖ − 1, 1) ≤ ‖B‖. (10)

Thus, establishing (8) with B replaced by H is enough.
Straightforward computation shows that

(P∗
σ Lσ L

∗
σ Pσ )st =

min(s,t)−1∑
k=1

Hsσ(k)Hσ(k)t , s, t = 1, . . . , n.

By counting the number of permutations for which σ(k) = l for some k =
1, . . . ,min(s, t) − 1 we get

1

n!
∑
σ

(P∗
σ Lσ L

∗
σ Pσ )st = (n − 1)!

n! (min(s, t) − 1)
n∑

l=1

Hsl Hlt = min(s, t) − 1

n
(H2)st .

Hence

1

n!
∑
σ

(P∗
σ Lσ L

∗
σ Pσ ) = 1

n
K ◦ H2,
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where ◦ denotes Hadamard multiplication, and

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
0 1 1 . . . 1 1
0 1 2 . . . 2 2
...

...
...

. . .
...

...

0 1 2 . . . n − 2 n − 2
0 1 2 . . . n − 2 n − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

In other words, the above Hadamard product can be written as the linear combination
of n − 1 diagonally projected submatrices of H2, each of norm ≤ ‖H2‖. This gives

‖ 1

n!
∑
σ

P∗
σ Lσ L

∗
σ Pσ ‖ ≤ n − 1

n
‖H2‖ < ‖H‖2,

which completes the proof. ��
The following resultwas suggested to thefirst author byB.Kashin (Steklov Institute,

Moscow), and is included here with his permission.

Theorem 3 There is an absolute constant C2 such that for any B ∈ Hn there exists
a permutation σ for which

‖Lσ ‖ ≤ C2‖B‖. (12)

Moreover, if D = I and B is positive semi-definite then (7) holds with an absolute
constant C1 ≤ C2.

Proof Weaker versions of (12), where the spectral norm ‖L‖ = ‖L‖�n2→�n2
is replaced

by ‖L‖�n2→�nq
with 1 ≤ q < 2, have been proved in [7] and [1].

For the proof of (12) we explore the following particular result on matrix paving,
which for a long time was known as Anderson’s Paving Conjecture for Hermitian
matrices with small diagonal. This conjecture is equivalent to the Kadison-Singer
Problem, a positive solution of which was recently given in [8]. We formulate it for
B ∈ Hn with zero diagonal, and refer to the recent expository paper [2] for details.

Theorem (Anderson’s Paving Conjecture) For any 0 < ε < 1, there is an integer
γ (ε) ≥ 2 such that for any n ∈ N and any B ∈ Hn with zero diagonal, there exists a
partition

w1 ∪ w2 . . . ∪ wγ = {1, 2, . . . , n}, wi ∩ w j = ∅, i �= j,

into γ ≤ γ (ε) non-empty index subsets such that

‖Bwk‖ ≤ ε‖B‖, k = 1, . . . , γ .

Here Bwk is the |wk | × |wk | submatrix corresponding to the index set wk × wk .
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Fig. 1 Block structure of Bσ

Bw1

Bw2

Bw3Bl1 Bl2

Returning to the proof of Theorem 3, by (9) it is enough to consider matrices
B ∈ Hn with zero diagonal. For given 0 < ε < 1 we proceed by induction in n to
establish (12) with a constant Cε := (γ (ε) − 1)/(1 − ε), where γ (ε) is defined in
the above paving theorem. To find an estimate for the best constant C2 in (12), we
then optimize with respect to ε resp. γ . Any σ will do for n = 2 since Cε > 1 and
in this case ‖L‖ = ‖B‖. Suppose the statement holds for all matrix dimensions less
than n. For B ∈ Hn with zero diagonal, consider the partition w1, w2, . . . , wγ in the
above paving theorem, and denote by σ0 the permutation that makes Bσ0 contain the
submatrices Bwk as consecutive diagonal blocks, as depicted in Fig. 1 for γ = 3. Let
Blk be the rectangular submatrices below Bwk in this Bσ0 , k = 1, . . . , γ − 1.

For each k = 1, . . . , γ we have |wk | < n, and by the induction assumption there
exist permutations σk such that

‖(Lwk )σk‖ ≤ Cε‖Bwk‖, k = 1, . . . , γ,

where (Lwk )σk is the strictly lower triangular part of (Bwk )σk .
By superposing the permutations σk within each blockwith σ0, we get the desired σ :

In each diagonal block of Bσ we have now (Bwk )σk instead of Bwk , and the rectangular
submatrices B ′

lk
below the diagonal blocks are row and column permuted copies of

the previous Blk .
We split Lσ into the sum of a block-diagonal matrix L1 containing all (Lwk )σk , and

another lower triangular matrix L2 containing all rectangular submatrices B ′
lk
. Since

‖L1‖ ≤ max
k=1,...,γ

‖(Lwk )σk‖ ≤ Cε max
k=1,...,γ

‖Bwk‖ ≤ Cεε‖B‖,

and

‖L2‖ ≤
γ−1∑
k=1

‖B ′
lk‖ ≤ (γ − 1)‖B‖ ≤ Cε(1 − ε)‖B‖

(note that each B ′
lk
is a row and column permuted version of a rectangular submatrix

of the original B, thus ‖B ′
lk
‖ ≤ ‖B‖). Therefore,
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‖Lσ ‖ ≤ ‖L1‖ + ‖L2‖ ≤ Cε‖B‖, (13)

which concludes the induction step.
To find numerical estimates for C2, we need bounds for γ (ε). The bounds given

in [2, Sect. 4]) are very rough, therefore we rely on Corollary 26 from Tao’s blog on
theKadison-Singer problemaccessible at https://terrytao.wordpress.com/2013/11/04/
which implies the following: For given γ ≥ 2, there exists a partition into γ 2 index
subsets such that the statement of Theorem 2 holds with ε = ε(γ ) = 2/γ + 2

√
2/γ .

For γ ≥ 12, one has ε < 1, and we conclude that

C2 ≤ 2 inf
0<ε<1

C(ε) ≤ 2 inf
γ≥12

C(ε(γ )) = 2 min
γ≥12

γ 2 − 1

1 − 2/γ − 2
√
2/γ

= 2907,

with the minimum achieved for γ = 18. The factor 2 comes from taking into account
(9). This bound is overly pessimistic (note that results closer to the known lower bound
γ (ε) ≥ 1/ε2 would result in much smaller values of C2).

It is therefore worth looking for improvements if B is positive semi-definite and
has unit diagonal D = I . Then B − I is a Hermitian matrix with zero diagonal and
spectrum in [−1, ‖B‖ − 1] satisfying (10), and Corollary 25 of Tao’s blog yields, for
any γ ≥ 2, the existence of a partition into γ index subsets such that in Theorem 2
we can take ε = ε′(γ ) = 1/γ + 2/

√
γ . Repeating the above proof steps for this case,

we see that

C1 ≤ min
γ≥6

γ − 1

1 − 1/γ − 2/
√

γ
≤ 32.42

(here ε′(γ ) < 1 for γ ≥ 6, and the minimum is achieved for γ = 12). ��
It remains an open question if an inequality similar to (12) also holds for the average

of the norms ‖Lσ ‖, namely if

E[‖L‖] := 1

n!
∑
σ

‖Lσ ‖ ≤ Cn‖B‖, B ∈ Hn, (14)

holds for some (bounded or slowly increasing) sequence of positive constants Cn =
o(ln(n)) (for a related result, see [1, Theorem 8.4]). A proof of (14) would imply
improved asymptotic estimates for the expected convergence rate of the preshuffled
SOR iteration, and not only for the best possible convergence rate, as established in
Part (b) of Theorem 4 below.

3 Application to SOR iterations

In this section we show a priori convergence estimates for the shuffled and preshuffled
SOR iterations that improve upon the one for the standard SOR iteration (1) stated
in Theorem 1, at least asymptotically. These estimates are formulated in terms of
the energy semi-norm associated with B, and are equivalent to estimates in the usual
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Euclidian norm for the Kaczmarz iteration applied to a consistent linear system Ax =
b, where B = AA∗. The result is summarized in the following

Theorem 4 Let By = b be a consistent linear system with positive semi-definite
B = L+ I +L∗ ∈ Hn, and denote by ȳ an arbitrary solution of it. Fix anyω ∈ (0, 2).

a) The expected squared energy semi-norm error of the shuffled SOR iteration con-
verges exponentially with the bound

E(|ȳ − y(k)|2B) ≤
(
1 − ω(2 − ω)λ1

(1 + ωλ1)2κ̄

)k

|ȳ − y(0)|2B, k ≥ 1,

for any ω ∈ (0, 2).
b) There exists some ordering σ such that the classical SOR iteration on the system

Bσ yσ = bσ converges for any ω ∈ (0, 2) with square energy semi-norm error
decay

|ȳ − y(k)|2B ≤
(
1 − ω(2 − ω)λ1

(1 + C1ωλ1)2κ̄

)k

|ȳ − y(0)|2B, k ≥ 1,

where the constant C1 satisfies (7).

Proof We start with b). Take the σ for which ‖Lσ ‖ ≤ C1‖B‖ according to (7). To
simplify notation, let us drop the subscript σ so that now Bσ = B = L + I + L∗,
bσ = b, Pσ = I , and ‖L‖ ≤ C1‖B‖. Recall the notation Q = I − ω(I + ωL)−1B
for the error iteration matrix, and check that Cn = U ⊕ V , where U = Ker(B) and
V = (I +ωL)−1Ran(B) are Q-invariant subspaces (obviously, Q is the identity when
restricted to U ). Write the SOR iterates as y(k) = u(k) + v(k), u(k) ∈ U , v(k) ∈ V .
Since y(k+1) = Qy(k) + ω(I + ωL)−1b, by induction it follows that

u(k) = u(0), v(k) = Qkv(0) +ω(I + Q +· · ·+ Qk−1)(I +ωL)−1b, k ≥ 1. (15)

Now, any solution ȳ of By = b can be written as ȳ = u+ v̄, where u ∈ U is arbitrary,
and v̄ ∈ V is unique. Because

|ȳ − y(k)|2B = 〈B(ȳ − y(k)), ȳ − y(k)〉 = 〈B(v̄ − v(k)), v̄ − v(k)〉 = |v̄ − v(k)|2B,

and v̄ − v(k+1) = v̄ − Qv(k) − ω(I + ωL)−1Bv̄ = Q(v̄ − v(k)), all we need is an
estimate of the form

|Qv|2B ≤ ρ|v|2B, v ∈ V .

By substituting ωB = (I + ωL) + (I + ωL∗) − (2 − ω)I below, we get

|Qv|2B = 〈Bv, v〉 − ω〈B((I + ωL)−1 + (I + ωL∗)−1)Bv, v〉
+ ω〈B(I + ωL∗)−1(ωB)(I + ωL)−1Bv, v〉

= 〈Bv, v〉 − ω(2 − ω)‖(I + ωL)−1Bv‖2.
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Using (7), the last term can be bounded from below as

‖(I + ωL)−1Bv‖2 ≥ ‖Bv‖2
‖I + ωL‖2 ≥ λr |v|2B

(1 + ωC1‖B‖)2 = λ1|v|2B
(1 + ωC1λ1)2κ̄

.

Therefore, we obtain

ρ = 1 − ω(2 − ω)λ1

(1 + ωC1λ1)2κ̄
,

which gives the bound stated in Part b). Moreover, since ‖v‖ and |v|B are equivalent
norms on V , we see that v(k) → v̄. According to (15)

y(k) → u(0) + v̄,

so the SOR iteration converges in the usual sense as well, with the U = Ker(B)

component in the limit depending on the starting vector y(0) if B is singular. Returning
to the original formulation as preshuffled SOR iteration, the Ker(B) component of the
limit would also depend on σ .

The result of Part a) requires a similar, yet slightly more subtle analysis. Recall
that in each step of the shuffled iteration, given the current iterate y(k), we choose a
permutation σ at random, apply the SOR step (with matrix Bσ = Pσ BP∗

σ and right-
hand side bσ = Pσb) to Pσ y(k), and return afterwards to the original ordering by
multiplying with P∗

σ . In other words, the iteration step is now

y(k+1) = P∗
σ [(I − ω(I + ωLσ )−1Bσ )Pσ y

(k) + ω(I + ωLσ )−1bσ ]
= (I − ωP∗

σ (I + ωLσ )−1Pσ B︸ ︷︷ ︸
=Qσ

)y(k) + ωP∗
σ (I + ωLσ )−1Pσb.

Thus, as before

|e(k+1)
σ |2B = |Qσ (ȳ − y(k))|2B = |e(k)|2B − ω(2 − ω)‖(I + ωLσ )−1Pσ B(e(k))‖2,

where for short we have set e(k+1)
σ := ȳ − y(k+1) and e(k) := ȳ − y(k) (indicating

that y(k+1) depends on σ , while y(k) is considered fixed at the moment). The expected
square semi-norm error after k + 1 iterations (conditioned on the error e(k)) is thus

1

n!
∑
σ

|e(k+1)
σ |2B = |e(k)|2B − ω(2 − ω)

n!
∑
σ

‖(I + ωLσ )−1Pσ Be
(k)‖2. (16)

We give a lower estimate for the last term in (16) with Be(k) temporarily replaced
by any unit vector z. Since for positive definite S ∈ Hn we have

〈Sy, y〉〈S−1y, y〉 ≥ 1, ‖y‖ = 1,
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(indeed, 1 = ‖y‖4 = 〈S1/2y, S−1/2y〉2 ≤ ‖S1/2y‖2‖S−1/2y‖2), applying this
inequality with S = (I + ωLσ )(I + ωL∗

σ ) and y = Pσ z, we get

‖(I + ωLσ )−1Pσ z‖−2 ≤ ‖(I + ωL∗
σ )Pσ z‖2 = 〈‖z‖2 + ω(Hz, z)

+ω2(
1

n!
∑
σ

P∗
σ Lσ L

∗
σ Pσ )z, z〉,

where as before H = B − I = L + L∗. Thus, by the arithmetic-harmonic-mean
inequality,

1

n!
∑
σ

‖(I + ωLσ )−1Pσ z‖2

≥ n!
(∑

σ

‖(I + ωLσ )−1Pσ z‖−2

)−1

≥ n!
(∑

σ

‖(I + ωL∗
σ )Pσ z‖2

)−1

=
(

(‖z‖2 + ω(Hz, z) + ω2(
1

n!
∑
σ

P∗
σ Lσ L

∗
σ Pσ z, z)

)−1

.

By Theorem 2, the sum in the last expression can be estimated by

‖z‖2 + ω(Hz, z) + ω2(
1

n!
∑
σ

P∗
σ Lσ L

∗
σ Pσ z, z) ≤ (1 + w‖H‖)2 ≤ (1 + ωλ1)

2.

This gives the needed auxiliary result

1

n!
∑
σ

‖(I + ωLσ )−1Pσ z‖2 ≥ (1 + ωλ1)
−2, ‖z‖ = 1.

Going back to the notation of (16), we therefore have

1

n!
∑
σ

|e(k+1)
σ |2B = |e(k)|2B − ω(2 − ω)

(1 + ωλ1)2
‖Be(k)‖2 ≤

(
1 − ω(2 − ω)λr

(1 + ωλ1)2

)
|e(k)|2B,

(17)
which implies the desired estimate for the expected square energy semi-norm error
after one iteration step, conditioned on the previous iterate. Since the random choice
of σ is considered independent from iteration step to iteration step, we can take the
expectation of |e(k)|2B in (17) and arrive at the statement of Part a). Finally, we note that
for singular B, the result of Part a) only implies that the unique solution component
in Ran(B) is recovered at an exponential rate from the iterates (in expectation). ��

We conclude with a few further comments on the estimates for shuffled SOR iter-
ations obtained in Theorem 4. First of all, they are worst-case upper bounds for the
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Fig. 2 Hyperplanes for ADM
example with m = 4

ker(a3)

ker(a4)

ker(a1)

ker(a2)

class of all consistent systems By = b with Hermitian positive semi-definite matrix B
and normalization condition D = I . As such, they improve upon the worst-case upper
bounds for fixed cyclic ordering from Theorem 1, at least in the asymptotic regime
n → ∞. The current estimateC1 ≤ 32.42 entering the bound for the preshuffled SOR
iteration is certainly too pessimistic compared to our numerical experience reported in
[11], it is due to our reliance on Theorem 2 for which currently only suboptimal quan-
titative versions, i.e., crude estimates for γ (ε), are available. Finding better estimates
for γ (ε) and the constant C1 in (7), or replacing the use of simple norm estimates for
L by more subtle techniques, would be desirable. We leave this for future work.

Another issue is the formal superiority of the bound (5) for the single-step ran-
domized SOR iteration compared to our results which is not reflected in the actual
performance of the methods in many tests, where shuffled and preshuffled SOR iter-
ations compete well. The appearance of an additional factor λ1 in the denominator of
our convergence rate estimates in Theorems 1 and 4 compared to (5) is inherent to our
approach of analyzing the error reduction per sweep rather than estimating the single-
step error reduction. Due to the assumed normalization D = I , we have 1 ≤ λ1 ≤ n,
however in many practical cases (and for typical ensembles of random matrices) the
actual value of λ1 remains close to 1 which partly mitigates the issue. We conclude
with an academic example showing that the extra λ1 factor in the denominator of the
bound in Theorem 1 is necessary (whether this is also true for the bounds in Theorem 4
remains open).

For eachm ∈ N, consider the homogenous linear system By = 0, where B = AA∗
is induced by the 2m × 2 matrix A with unit norm row vectors a j given by

a j = (
cos(( j − 1)θm), sin(( j − 1)θm)

)
, j = 1, . . . , 2m, θm := π

2m
. (18)

It is easy to check that A∗A = mI . Thus, B has rank r = 2, essential condition number
1, and spectral norm ‖B‖ = λ1 = m. As mentioned in the introduction, applying the
Gauß-Seidel method (ω = 1) to By = 0 is the same as applying the Kaczmarz aka
ADM method to Ax = 0. From a geometric point of view (see Fig. 2), since the
2m hyperplanes the ADM method for Ax = 0 projects on split the plane with equal
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angles θm , the error reduction rate per single step of the ADM iteration with cyclic
ordering is simply cos θm , and becomes increasingly slow as m grows (see Fig. 2).
The convergence rate of the squared error per sweep is thus

(cos θm)2m ≈ (1 − π2

8m2 )2m ≈ 1 − π2

4m
, m → ∞.

This shows that without the λ1 = m factor in the denominator of the bound (2) from
Theorem 1 we would arrive at a contradiction.
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