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Triangular truncation and its extremal matrices
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SUMMARY

The triangular truncation operator is a linear transformation that maps a given matrix to its strictly lower
triangular part. The operator norm (with respect to the matrix spectral norm) of the triangular truncation is
known to have logarithmic dependence on the dimension, and such dependence is usually illustrated by a
specific Toeplitz matrix. However, the precise value of this operator norm as well as on which matrices can
it be attained is still unclear. In this article, we describe a simple way of constructing matrices whose strictly
lower triangular part has logarithmically larger spectral norm. The construction also leads to a sharp estimate
that is very close to the actual operator norm of the triangular truncation. This research is directly motivated
by our studies on the convergence theory of the Kaczmarz type method (or equivalently, the Gauß-Seidel
type method), the corresponding application of which is also included. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Let Mn be the space of n�n (2 6 n <1) complex matrices equipped with the spectral norm k � k,
define L to be the n � n matrix with 1 in its strictly lower triangular part and 0 elsewhere:

Ljk WD

²
1 j > k

0 j 6 k :

then the triangular truncation L on Mn is defined as

L.A/ WD L ı A; A 2Mn;

where ı stands for the Hadamard product.
Hereafter A always denotes an arbitrary element in Mn. We shall also use k � k for the operator

norm (with respect to the matrix spectral norm) on Mn and the Euclidean norm on the underlying
vector space Cn, these situations should be clear from the context without raising any confusion.

It is known (see [1, 2]) that

lim
n!1

kLk
lnn
D
1

�
:

In fact, an upper bound of form kLnk 6 c lnn for some uniform constant c independent of n
(hereafter the notation c will always be used for various uniform and absolute constants independent
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of the context) can be established in several ways, for example, see [1, 3–7] and [2, Chapter 4]. In
particular, [1] gives the following upper bound which seems to be the tightest one at the moment:

kLk 6 1C 1

�
.1C lnn/: (1)

On the other hand, a lower bound of form kLk > c lnn is usually illustrated by the Toeplitz
matrices B 2Mn defined as

Bjk D

²
1
j�k

j ¤ k

0 j D k
;

i.e.,

B D

0
BBBBB@

0 �1 �1
2
�1
3
: : :

1 0 �1 �1
2
: : :

1
2

1 0 �1 : : :
1
3

1
2

1 0 : : :

: : : : : : : : : : : : : : :

1
CCCCCA : (2)

By the standard Toeplitz theory (see [8, Chapter 1]), kBk (for all n) are uniformly bounded by the
L1..0; 2�// norm of its corresponding Toeplitz symbol, which can be found via the Fourier series.
In this case here, the Toeplitz symbol is

1X
kD1

1

k
eik� �

1X
kD1

1

k
e�ik� D � ln

 
1 � ei�

1 � e�i�

!
D � ln.� cos � � i sin �/ D � � �;

which is bounded on the torus, while

kL.B/k
kBk

> 4

5�
lnn; (3)

can be shown (see [2, Chapter 4]) by applying B to the vector .0; 1; 1; 1; : : : ; 1/. Slightly different
computations are available in [3, 7, 9–11] as well.

The Toeplitz theory also relates the Riesz projection of Fourier series to the triangular truncation
operator L on the Toeplitz class. It is a classical theorem of Riesz that the norm of the Riesz pro-
jection is bounded by cp on Lp for 1 < p < 1 (see [12, Chapter 4.20]), this boundedness carries
over to the Schatten-p class (see [13, Chapter 11.10, p1137] or [14, Chapter 3.6, p118]).

Given a fixed R 2 .0; lnn=�/, let us call a matrix A has the R-truncation property if

kL.A/k > RkAk:
For example, the Toeplitz matrix in Equation (2) has the .4 lnn/=.5�/-truncation property.
In this article we would like to present two more classes of matrices that possess the R-truncation

property for some R close to lnn=� , to be introduced as Example 1 and Example 2 in the next two
sections. Estimating these examples also improves both bounds in Equations (1) and (3) to

1

2n

n�1X
kD1

csc
.2k � 1/�

4n � 2
6 kLk 6 1

2
C

1

2n

nX
kD1

ˇ̌̌
ˇcsc

.2k C 1/�

2n

ˇ̌̌
ˇ ;

or equivalently:

1

�
.lnnC �/ �O

�
lnn

n

�
6 kLk 6 1

�

�
lnnC

1

4

�
C 1;

where � is the Euler constant andO.�/ is the big O notation. Based on our examples, one can further
construct more matrices that have the R-truncation property for R of scale O.lnn/, in particular,
they need not be Toeplitz matrices.
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As triangular matrices naturally enters the iteration formula of the Gauß-Seidel type method (see
[15] and related references), such results have a direct application to the convergence theory of the
Gauß-Seidel type method: the error reduction rate may suffer from a logarithmic deterioration. The
corresponding connections and the related numerical results are included in the last section.

2. AN IMPROVED UPPER BOUND

We introduce the matrix T 2Mn as

Tjk WD sgn .k � j /i D

8<
:
0 j D k
�i j > k
i j < k

;

where sgn denotes the sign function, i.e.,

T D

0
BBB@
0 i i i : : :

�i 0 i i : : :

�i �i 0 i : : :

�i �i �i 0 : : :

: : : : : : : : : : : : : : :

1
CCCA :

Define the transformation T to be

T .A/ D T ı A;
and let D be the main diagonal projection on Mn, i.e.,

D.A/jk D
²
Ajk j D k
0 j ¤ k

:

D and T are obviously related to L through the Cartesian decomposition of L:

L.A/ D <.L/.A/C i=.L/.A/ D 1

2
.A �D.A//C i

2
T .A/:

Therefore, L can be written as

L D 1

2
.I C iT / � 1

2
D;

where I is the identity operator on Mn.
The notion of T was also used in [6, 10, 14] without an explicit name. Since T maps the real part

of L to its imaginary part, we may call it the (harmonic) conjugate transform. In particular, applying
T to matrices in the Toeplitz class with vanishing main diagonal (see [10]) is equivalent to applying
the discrete Hilbert transform to their corresponding Toeplitz symbol.

As pointed out in [6, 10], kT k provides a very good approximation of kLk:

Lemma 1

1

2
kT k 6 kLk 6 1

2
C
1

2
kI C iT k:

We omit the proof since it is almost trivial by using the triangular inequality after noticing that

kD.A/k D max
k
j.A�k; �k/j 6 kAk;

where �k is the k-th canonical basis (column) vector in Cn. The notation �k will be reused later.
Write tr for the trace and � for the adjoint operation. Also denote k � kp as the Schatten-p norm.

For finite matrices, k � kp is just the `p norm of the singular values. In particular, k � k coincides
with k � k1 on the finite dimensional spaces Mn. Consequently, if we write the dual space of Mn

as M0
n (with element A0 2M0

n), then the following lemma is a direct corollary of the duality on the
Schatten-p class, a proof of which can be found in [2, Theorem 1.12]:
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Lemma 2
M0

n is the space of n � n complex matrices equipped with k � k1, the dual pairing is given by

hA;A0i D tr.A.A0/�/:

It is also easy to verify that

Lemma 3
T � acts on M0

n by

T �.A0/ D �T ı A0:

The next two lemmas have already been stated in [6] under a more general framework. To have a
clear description of our construction, we repeat them here but using different techniques.

Lemma 4
Let

� WD e�i=n; ! WD e2�i=n;

then the k-th (k D 1; 2; : : : ; n) unit column eigenvector of T is

vk D
1
p
n

�
1; ��1!�k;

�
��1!�k

�2
; : : : ; .��1!�k/n�1

�
;

and the corresponding eigenvalue is

�k D �i

n�1X
jD1

�
�!k

�j
D cot

.2k C 1/�

2n
:

Proof
Notice that T is a skew circulant matrix, it can hence be made into a circulant matrix (which is
diagonalizable by the Fourier matrix) after being conjugated with

D� WD diag
�
1; �; �2; : : : ; �n�1

�
: (4)

The result follows by invoking the standard formula for the eigenstructure of circulant matrices,
detailed computations are accessible in either [6] or [16]. �

The notations � and ! in the above proof will be followed hereafter. Knowing the explicit
eigenstructure of T leads to the conclusion that

Lemma 5

kT k D 1

n
kT k1:

Proof
Let x; y 2 Cn be arbitrary unit column vectors, and introduce the notion Pxy for the rank 1 norm 1
operator

Pxy WD xy
�; (5)

One may check that the eigendecomposition of T can be written as

T D

nX
kD1

�kPvkvk D

nX
kD1

�kDvkED
�
vk
; (6)
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where E is the all one matrix (i.e., the identity element with respect to the Hadamard product)
and Dvk is the diagonal matrix with its j -th diagonal entry being the j -th entry of vk . Since the
Hadamard product commutes with diagonal scaling, we then have

T .Pxy/ D T ı Pxy D
nX
kD1

�kDvkPxyD
�
vk
;

Lemma 4 shows that
p
nDvk is unitary, hence

kT .Pxy/k1 D
�����
nX
kD1

�kDvkPxyD
�
vk

�����
1

6
nX
kD1

j�kjkDvkPxyD
�
vk
k1 D

1

n
kPxyk1

nX
kD1

j�kj D
1

n
kT k1:

By the duality in Lemma 2 and 3, together with the Hölder inequality we get

kT .A/k D sup
x;y
jy�T .A/xj D sup

x;y
j.AT �.Pxy//j 6 sup

x;y
kAkkT .Pxy/k1 6

1

n
kAkkT k1:

Dividing by kAk at both sides and taking supreme over A we obtain

kT k 6 1

n
kT k1:

That

kT k > 1

n
kT k1;

is illustrated by Example 1 below. �

Example 1
Define the matrix S through the eigendecompostion:

S WD

nX
kD1

sgn.�k/Pvkvk D
nX
kD1

sgn.�k/DvkED
�
vk
; (7)

i.e., S has the same set of eigenvectors as T , but with its eigenvalues being the image of the spectrum
of T under the sgn mapping. Obviously

kSk D 1:

Let

� D
1
p
n
.1; 1; 1; : : :/;

and P�� as defined in Equation (5), then

kT .S/k > j��T .S/�j D jtr.ST �.P��//j D
ˇ̌̌
ˇ�1n tr.S.T ıE//

ˇ̌̌
ˇ D 1

n
jtr.ST /j:

Since S by definition has the same set of eigenvectors as T , the above can be further computed as

1

n
j.ST /j D

1

n

ˇ̌̌
ˇ̌tr
 

nX
kD1

�ksgn.�k/Pvkvk

!ˇ̌̌
ˇ̌ D 1

n

nX
kD1

j�kj D
1

n
kT k1:

Therefore

kT k > kT .S/k
kSk

D kT .S/k D 1

n
kT k1:
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The notation � will also be reused in the sequel.
Recall Lemma 1, we can conclude that the family of matrices in Example 1 is very close to those

matrices on which kLk shall be attained.
Moreover, since

�

n
kT k1 D

�

n

nX
kD1

ˇ̌̌
ˇcot

.2k C 1/�

2n

ˇ̌̌
ˇ ; (8)

is a Riemann sum that approximates the integral
R
j cot � jd� , we may apply elementary calculus to

obtain a marginal improvement over the previous estimate in Equation (1):

Lemma 6

kLk 6 1C 1

�

�
1

4
C lnn

�
:

Proof
Rewrite the upper bound in Lemma 1 as

kLk 6 1
2
C
1

2
k.I C iT /k

D
1

2
C
1

2

ˇ̌̌
ˇ̌1C i 1

n

nX
kD1

ˇ̌̌
ˇ̌ cot

.2k C 1/�

2n
jj

6 1
2
C

1

2n

nX
kD1

ˇ̌̌
ˇcsc

.2k C 1/�

2n

ˇ̌̌
ˇ

D
1

2
C
1

n

bn2 cX
kD0

csc
.2k C 1/�

2n
:

We can bound the summation by

1

n

bn2 cX
kD0

ˇ̌̌
ˇcsc

.2k C 1/�

2n

ˇ̌̌
ˇ D 1

2n
csc

�

2n
C
1

�

0
@ �

2n
csc

�

2n
C
�

n

bn2 cX
kD1

csc
.2k C 1/�

2n

1
A

6 1
2
C
1

�

Z �
2

�
2n

csc �d�

D
1

2
C
1

�
ln cot

�

4n

6 1
2
C
1

�

�
1

4
C lnn

�
;

where in both inequalities we used the fact that n > 2. In particular, the last inequality holds since

ln cot
�

4n
� lnn D ln

cos �
4n

n sin �
4n

! ln
4

�
� 0:24 <

1

4
;

where the convergence is monotonic from below as n!1.
Combining the above computations together establishes this lemma. �

3. AN IMPROVED LOWER BOUND

The derivation of the lower bound is very similar to what we have shown in the last section, first one
may verify that
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Lemma 7
L� acts on A0 2M0

n by

L�.A0/ D L� ı A0:

Then we have:

Example 2
Let the singular value decomposition of L be

L D U†V;

and define

QS WD UV;

clearly

kL. QS/k > j��L. QS/�jDjtr. QSL�.P��//jD
ˇ̌̌
ˇ1n tr. QS.L� ıE//

ˇ̌̌
ˇD 1n jtr. QSL�/jD 1n tr.U†U �/ D

1

n
kLk1:

Since QS is unitary, this implies that

kLk > kL.
QS/k

k QSk
D
1

n
kLk1: (9)

kLk1 can also be computed explicitly:

Lemma 8
The k-th singular value of L is:

�k D

²
0 k D 0
1
2

csc 2k���
4n�2

k D 1; 2; : : : ; n � 1
:

Proof
Straight forward computation shows

.LL�/jk D min.j; k/ � 1;

i.e.,

LL� D

0
BBBBBB@

0 0 0 : : : 0 0

0 1 1 : : : 1 1

0 1 2 : : : 2 2
:::
:::
:::
: : :

:::
:::

0 1 2 : : : n � 2 n � 2
0 1 2 : : : n � 2 n � 1

1
CCCCCCA
:

Hence 0 is an eigenvalue, while the other eigenvalues are the eigenvalues of the following prin-
cipal submatrix (which we denote as K) obtained by removing the first row and the first column of
LL�, i.e.,

K WD

0
BBBB@
1 1 : : : 1 1

1 2 : : : 2 2
:::
:::
: : :

:::
:::

1 2 : : : n � 2 n � 2
1 2 : : : n � 2 n � 1

1
CCCCA :

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2016)
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Observe that

K�1 D

0
BBBB@
2 �1
�1 2 �1

: : :
: : :

: : :

�1 2 �1
�1 1

1
CCCCA :

i.e., K�1 differs from the tridiagonal matrix ¹�1; 2;�1º by 1 at the bottom right corner.
Writing ˇk as the k-th eigenvalue of K�1 and .u1; u2; : : : ; un�1/ the corresponding eigenvector,

we arrive at the following recurrence relation and boundary conditions:8<
:
uj�1 C .ˇk � 2/uj C ujC1 D 0
u0 D 0
un�1 D un

;

which has solution

uj D c1r
j
1 C c2r

j
2 ;

where r1, r2 are the roots of the associated characteristic equation

x2 C .ˇk � 2/x C 1 D 0:

Using the boundary conditions ²
u0 D 0
un�1 D un

;

together with the following relation from the characteristic equation

r1r2 D 1;

one easily gets that ²
c1 C c2 D 0

.r1/
2n�1 C 1 D 0

;

and therefore

ˇk D 2 �
u2

u1
D 2 �

r21 �
1

r2
1

r1 �
1
r1

D 2 � 2 cos.arg.r1// D 4 sin2
.2k � 1/�

4n � 2
:

Since �k (for k D 1; 2; : : : ; n � 1) is the square root of the k-th eigenvalue of LL�, which is the
reciprocal of the k-th eigenvalue of K�1, this completes the proof. �

The above method also applies to L�L and thus one can derive explicit form for the singular
vectors and compute QS as well, these elementary computations are left to the interested readers.

We may estimate the growth of kLk1=n and conclude that

Lemma 9

kLk > 1

n
kLk1 >

1

�
.lnnC �/ �O

�
lnn

n

�
:
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Proof
The first inequality has already been shown in Equation (9). For the second one, we apply Lemma
8 to get

1

n
kLk1 D

1

2n

n�1X
kD1

1

sin 2k���
4n�2

> 1

2n

n�1X
kD1

4n � 2

2k� � �

D
1

�

�
2 �

1

n

� n�1X
kD1

1

2k � 1

> 2

�

nX
kD1

1

2k
�

1

�n

n�1X
kD1

1

2k � 1

> 1

�
.lnnC �/ �O

�
lnn

n

�
:

�

4. A SHARP ESTIMATE OF kLk

Combining the results in the previous sections, we are able to pin down kLk into a narrow range
whose upper and lower bound can be computed explicitly:

Theorem 1
There holds

1

2n

n�1X
kD1

csc
.2k � 1/�

4n � 2
6 kLk 6 1

2
C

1

2n

nX
kD1

ˇ̌̌
ˇcsc

.2k C 1/�

2n

ˇ̌̌
ˇ ; (10)

in particular,

1

�
.lnnC �/ �O

�
lnn

n

�
6 kLk 6 1

�

�
lnnC

1

4

�
C 1:

Simple numerical computation shows that the difference between upper and lower bounds in
Equation (10) starts off at around 0.71 when n D 2 and quickly stabilizes to around 0.28 after
n > 500 (see Figure 1(a)). Example 1 and Example 2 are among those matrices that illustrate the
above theorem.

Obviously one can shift the spectrum of the matrices in Example 1 and 2 a bit to obtain other
matrices with similar truncation property. Moreover, since the Hadamard product commutes with
diagonal scaling, the R-truncation properties of S and QS remain invariant if we conjugate them by
diagonal unitary matrices. For instance, conjugating the matrix S in Example 1 with the matrix D�
defined in Equation (4) yields a circulant matrix which has the sameR-truncation property as S , i.e.,

kL.D�SD�� /k
kD�SD

�
�
k
D
kL.S/k
kSk

:

In general, left or right multiplying S and QS by a diagonal matrix changes R by at most the
spectral conditioning of the multiplied diagonal matrix, while a bounded additive perturbation also
has bounded impact on the truncation. Therefore it is easy to construct various matrices with the
O.lnn/-truncation property based on these prototypes.
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Figure 1. (a) The Estimate of kLk, (b) The Logarithmic Deterioration.

5. APPLICATION TO THE GAUß-SEIDEL TYPE METHODS

Consider a consistent linear system

By D b;

where B 2Mn is Hermitian positive definite. Eigenvalues of B are denoted as

	1 > 	2 > : : : > 	n > 0;
and the spectral condition number 
 of B is as usual defined to be


 WD
	1

	n
:

Let L;U (we apologize for reusing L here for a different meaning) respectively be the strictly
lower and upper triangular parts of B , let D be the main diagonal part of B , and denote I as
the identity matrix. Then one step (which corresponds to a full sweep of the entire system) of the
Gauß-Seidel iteration reads

y.kC1/ D .D C L/�1
�
b � Uyk

�
: (11)

Let Qy be the solution of the system, one may thus replace b with B Qy and rewrites the above
formula as

y.kC1/ � Qy D �.D C L/�1U
�
yk � Qy

�
D
�
I � .D C L/�1B

� �
yk � Qy

�
:

Therefore the error reduction matrix has form

Q WD I � .D C L/�1B:

To estimate the error reduction rate, we need to switch to the energy norm k � kB :

kyk2B WD .By; y/;

which is a well defined norm since B is Hermitian positive definite. kykB is equivalent to the
Euclidean norm kyk as

p
	nkyk 6 kykB 6

p
	1kyk:

Proposition 1

kQyk2B 6
�
1 �

c


2 ln2 n

�
kyk2B ; y 2 Cn: (12)

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2016)
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Proof
Observe that the smallest singular value of D admits a lower bound

�min.D/ D min
k
jDkkj D min

k
j.B�k; �k/j > 	n;

while similarly for its largest singular value we have

�max.D/ D max
k
jDkkj D max

k
j.B�k ; �k/j 6 	1:

Straightforward computation shows that

kQyk2B D .By; y/ � .B.D C U/
�1.D C U CD C L � B/.D C L/�1By; y/

D kyk2B � .B.D C U/
�1D.D C L/�1By; y/

6 kyk2B �
.By; y/

kB�1kkD�1kkD C Lk2

6 kyk2B �
	2n

.1C kLk/2	21
kyk2B

6
�
1 �

c


2 ln2 n

�
kyk2B ;

where by Theorem 1 the constant c is asymptotically �2. This completes the proof. �

The cases of successive over relaxation method (i.e., SOR, which adds a relaxation parameter in
each step) and symmetric successive over relaxation method (i.e., SSOR, which sweeps the rows in
the reversed order after a SOR sweep) are rather similar, to keep our notations simple we will leave
out the details here, some discussions can be found in [15] and [17].

Of particular interest is the Kaczmarz method. For a linear system

An�mx D b;

Each step of the Kaczmarz method is an orthogonal projection from the current solution onto the
affine plane defined by the j -th (with j runs over the row indices in a circulant order) component
equation

ajx D bj ;

i.e.,

x.kC1/ D .I � Pj /x.k/ C bj
a�j

kaj k2
; j D .k (mod)n/C 1;

where Pj is the orthogonal projection onto the span of a�j .

Therefore the corresponding error reduction matrixQkac´ for a full sweep of the linear system is

Qkac´ D .I � Pn/.I � Pn�1/ : : : .I � P1/: (13)

Let QA be the row normalized version of A, i.e., QA is obtained by left multiplying A with

diag

�
1

ka1k
;

1

ka2k
; : : : ;

1

kank

�
:

Denote the j -th row in QA as Qaj , and set

B D QA QA�;

and L again its strictly lower triangular part, then straight forward computation would also
reveal that

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2016)
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Qkac´ D I � QA
�.I � L/�1 QA: (14)

Indeed, since L is nilpotent, the right hand side of the above can be written as:

I � QA�.I C L/�1 QA D I � QA�.I C .�L/C .�L/2 C : : :C .�L/n�1/ QA;

while by definition of Pj we have:

Pj1Pj2 : : :Pjk D QA��j1��j1 QA QA
��j2�

�
j2
QA : : : QA��jk�

�
jk
QA

D QA��j1
�
Qaj1 Qa

�
j2
Qaj2 : : : Qa

�
jk

�
��jk
QA

D QA��j1
�
Bj1j2Bj2j3 : : : Bjk�1jk

�
��jk
QA

D QA��j1
�
Lj1j2Lj2j3 : : : Ljk�1jk

�
��jk
QA;

where the last equality holds since the ordering of the projections in Equation (13) imposed the
condition that:

j1 > j2 > j3 > : : : > jk : (15)

Hence for any fixed k, enumerating j1; j2; : : : ; jk through all possible values establishes

.�1/k
X

j1;j2;:::;jk

Pj1Pj2 : : :Pjk D .�1/k
X
j1;jk

QA�
�
�j1L

k�1
j1jk

��jk

�
QA D .�1/k QA�Lk�1 QA;

which leads to the equivalence between Equation (13) and Equation (14).
In fact, applying the Kaczmarz method to Ax D b is the same as applying the Gauß-Seidel

method to the normalized system By D Qb ( Qb is defined analogously as QA), which should be clear
by comparing Qkac´ with Q. A different derivation can also be found in [18, p.210].

Therefore the estimate in Proposition 1 carries over to kQkac´k for the Kaczmarz method (or
equivalently, the Schwarz algorithm for the domain decomposition method) up to a bounded fac-
tor depending on the spectral conditioning of A. This has been stated in a series of papers in
[17, 19, 20].

Moreover, since all the iteration steps of the Kaczmarz method take place in range.A�/, choosing
x.0/ 2 range.A�/ guarantees the convergence even if B is only positive semi-definite: one simply
replaces 	n with 	r (r being the rank of B) in the corresponding estimate in Proposition 1 (see
[21, p.125] for the formula of the limit vector from the iteration, and see [17] for the estimate for
the error reduction rate).

To show that such a logarithmic upper bound as in Proposition 1 is attainable in practice, we
can set

B D I C
1

2
S;

where S is the matrix defined in Example 1 and for convenience we assume n is a large even
number.

It is clear from the eigenstructure of S that B is Hermitian, and its spectrum consists of only
3=2 and 1=2, with each appearing precisely n=2 times. Thus B is positive definite with 
 D 3.
Moreover, as Lemma 4 shows the symmetry of the entries in the eigenvectors of S , one may verify
that .S�k; �k/ is 0 for all k D 1; 2; : : : ; n, hence the main diagonal of B is just I , and it can be
factored into AA� with the row norm of each row in A normalized to 1.

It is also easy to see from Lemma 4 that the spectrum of T lies symmetrically on the real axis,
therefore a similar computation as in Example 1 shows that

kI C Lk > k i
2
..I C U/ � .I C L//k D

1

2
kT .B/k > 1

2
j.T .B/�; �/j D 1

2n
jtr.BT /j D

1

4n
kT k1;
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where the extra 1=2 factor in the last inequality comes from the fact that half of the spectrum from
T cancels out in the summation tr.BT /.

Now applying a similar technique as in Lemma 8 leads to

1

n
kT k1 D

1

n

nX
kD1

ˇ̌̌
ˇcot

.2k C 1/�

2n

ˇ̌̌
ˇ > 2

�

Z �
2

�
2n

cot �d� D
2

�

ˇ̌̌
ln sin

� �
2n

�ˇ̌̌
> 1

�
lnn;

where the last inequality holds since n > 2.
Consequently, if we take u to be the eigenvector for the smallest eigenvalue of .I C U/�1I.I C

L/�1 and set

y D
B�1u

kB�1uk
;

then

kQ�Qk > j.Q�Qy; y/j > 1 � j.I C U/
�1I.I C L/�1u; u/j

kB�1uk2
> 1 � c

ln2 n
;

where the constant c is bounded by 36�2 and we have absorbed 
 into it.
Since the error reduction matrix for the SSOR method is simplyQ�Q (if the relaxation parameter

is set to 1), the above suggests that the bound in Proposition 1 is achievable at every step of the
iteration if the SSOR method is applied to B with the initial error vector y.0/ � Qy chosen as the
eigenvector for the largest eigenvalue of Q�Q.

Now consider a new matrix

G D

�
AA

�
;

where the set of rows in
A

is the same as in A, but arranged in reversed order. Then obviously
applying the Gauß-Seidel method to GG� is same as applying the Kaczmarz method to G, and also
equivalent as applying the above SSOR method (with the relaxation parameter 1) to B .

Therefore the estimate in Proposition 1 is indeed not further improvable beyond a constant factor,
the logarithmic deterioration can happen in all Gauß-Seidel type methods, including the SOR and
SSOR method, the Kaczmarz method, and the Schwarz method if the matrix B has theR-truncation
property with R being logarithmically large (for example, a similar situation also holds for the
Toeplitz matrix defined in Equation (2)).

A simple way to circumvent this situation is to adopt a random row ordering in the iteration. That
a random row ordering may accelerate the iteration has been observed in various applications (for
example see [22, 23]), the recent result in [24] has drawn even more attention in this direction. It
is provable that the random row ordering can, in expectation, remove the lnn factor in Proposition
1, and thus make the iteration only depend on the spectral conditioning of the linear system, details
can be found in [15].

As a concluding remark, we include the result from a numerical test as Figure 1(b). It illustrates
the error reduction when applying the Gauß-Seidel method to B D 2I C S of growing sizes. In all
tests we solve the homogeneous system By D 0 with the initial vector set to B�1�=kB�1�k, thus
the initial errors in all tests are 1, and the graph shows that it takes increasing number of full sweeps
(as defined in Equation (11)) to reach the same error level as the size grows, which suggests the
existence of a deterioration here.
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